The Perception of Ramped Pulse Shapes in Cochlear Implant Users

Adamson, C. L., Reid, M. A., Mo, Z. L., Bowne-English, J., Davis, R. L. (2002). Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. Journal of Comparative Neurology, 447(4), 331–350. https://doi.org/10.1002/cne.10244
Google Scholar | Crossref | Medline Advanced Bionics. (2010). SoundWave TM2.0 fitting manual. Advanced Bionics LLC, CA, US.
Google Scholar Ballestero, J., Recugnat, M., Laudanski, J., Smith, K. E., Jagger, D. J., Gnansia, D., McAlpine, D. (2015). Reducing current spread by use of a novel pulse shape for electrical stimulation of the auditory nerve. Trends in Hearing, 19, 233121651561976. https://doi.org/10.1177/2331216515619763
Google Scholar | SAGE Journals | ISI Bates, D., Mächler, M., Bolker, B., Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Google Scholar | Crossref | ISI Beitel, R. E., Vollmer, M., Snyder, R. L., Schreiner, C. E., Leake, P. A. (2000). Behavioral and neurophysiological thresholds for electrical cochlear stimulation in the deaf cat. Audiology and Neuro-Otology, 5(1), 31–38. https://doi.org/10.1159/000013863
Google Scholar | Crossref | Medline Bierer, J. A., Litvak, L. (2016). Reducing channel interaction through cochlear implant programming may improve speech perception. Trends in Hearing, 20, 1–12. https://doi.org/10.1177/2331216516653389
Google Scholar | SAGE Journals Bierer, J. A. (2007). Threshold and channel interaction in cochlear implant users: Evaluation of the tripolar electrode configuration. The Journal of the Acoustical Society of America, 121(3), 1642–1653. https://doi.org/10.1121/1.2436712
Google Scholar | Crossref | Medline | ISI Bierer, J. A., Faulkner, K. F. (2010). Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves. Ear & Hearing, 31(2), 247–258. https://doi.org/10.1097/AUD.0b013e3181c7daf4
Google Scholar | Crossref | Medline | ISI Bierer, J. A., Nye, A. D. (2014). Comparisons between detection threshold and loudness perception for individual cochlear implant channels. Ear and Hearing, 35(6), 641–651. http://journals.lww.com/00003446-201411000-00007
Google Scholar | Crossref | Medline | ISI Bonnet, R. M., Frijns, J. H. M., Peeters, S., Briaire, J. J. (2004). Speech recognition with a cochlear implant using triphasic charge-balanced pulses. Acta Oto-Laryngologica, 124(4), 371–375. https://doi.org/10.1080/00016480410031084
Google Scholar | Crossref | Medline Boulet, J., White, M., Bruce, I. C. (2016). Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants. Journal of the Association for Research in Otolaryngology, 17(1), 1–17. https://doi.org/10.1007/s10162-015-0545-5
Google Scholar | Crossref | Medline | ISI Bruce, I. C., Green, L., V-ghaffari, B., & Rutherford, M. A. (2019). Poster: Simulating the Effects of “M-current” Potassium Channels in Cochlear Implant Excitation of Auditory Nerve Fibers. Conference on Implantable Auditory Prostheses (CIAP), July 2019, CA, US.
Google Scholar Brummer, S. B., Turner, M. J. (1977). Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes. IEEE Transactions on Biomedical Engineering. BME, 24(1), 59–63. https://doi.org/10.1109/TBME.1977.326218
Google Scholar | Crossref Carlyon, R. P., van Wieringen, A., Deeks, J. M., Long, C. J., Lyzenga, J., Wouters, J. (2005). Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hearing Research, 205(1–2), 210–224. https://doi.org/10.1016/j.heares.2005.03.021
Google Scholar | Crossref | Medline Carney, L. H., McDonough, J. M. (2019). Nonlinear auditory models yield new insights into representations of vowels. Attention, Perception, & Psychophysics, 81(4), 1034–1046. https://doi.org/10.3758/s13414-018-01644-w
Google Scholar | Crossref | Medline Dai, H., Micheyl, C. (2010). On the choice of adequate randomization ranges for limiting the use of unwanted cues in same-different, dual-pair, and oddity tasks. Attention, Perception, & Psychophysics, 72(2), 538–547. https://doi.org/10.3758/APP.72.2.538
Google Scholar | Crossref | Medline Dobie, R. A., Dillier, N. (1985). Some aspects of temporal coding for single-channel electrical stimulation of the cochlea. Hearing Research, 18(1), 41–55. https://doi.org/10.1016/0378-5955(85)90109-1
Google Scholar | Crossref | Medline Ferragamo, M. J., Oertel, D. (2002). Octopus Cells of the Mammalian Ventral Cochlear Nucleus Sense the Rate of Depolarization. Journal of Neurophysiology, 87(5), 2262–2270. https://doi.org/10.1152/jn.00587.2001
Google Scholar | Crossref | Medline | ISI Fraser, M., McKay, C. M. (2012). Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues. Hearing Research, 283(1–2), 59–69. https://doi.org/10.1016/j.heares.2011.11.009
Google Scholar | Crossref | Medline Gai, Y., Doiron, B., Kotak, V., Rinzel, J. (2009). Noise-Gated Encoding of Slow Inputs by Auditory Brain Stem Neurons With a Low-Threshold K + Current. Journal of Neurophysiology, 102(6), 3447–3460. https://doi.org/10.1152/jn.00538.2009
Google Scholar | Crossref | Medline Gai, Y., Doiron, B., Rinzel, J. (2010). Slope-Based Stochastic Resonance: How Noise Enables Phasic Neurons to Encode Slow Signals. PLoS Computational Biology, 6(6), e1000825. https://doi.org/10.1371/journal.pcbi.1000825
Google Scholar | Crossref | Medline Goehring, T., Archer-Boyd, A., Deeks, J. M., Arenberg, J. G., Carlyon, R. P. (2019). A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception. Journal of the Association for Research in Otolaryngology, 20(4), 431–448. https://doi.org/10.1007/s10162-019-00724-4
Google Scholar | Crossref | Medline Guérit, F., Marozeau, J., Deeks, J. M., Epp, B., Carlyon, R. P. (2018). Effects of the relative timing of opposite-polarity pulses on loudness for cochlear implant listeners. The Journal of the Acoustical Society of America, 144(5), 2751–2763. https://doi.org/10.1121/1.5070150
Google Scholar | Crossref | Medline Guérit, F., Marozeau, J., Epp, B., Carlyon, R. P. (2020). Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users. Journal of the Association for Research in Otolaryngology, 21(6), 497–510. https://doi.org/10.1007/s10162-020-00767-y
Google Scholar | Crossref | Medline Hardie, N. A., Shepherd, R. K. (1999). Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hearing Research, 128(1–2), 147–165. https://doi.org/10.1016/S0378-5955(98)00209-3
Google Scholar | Crossref | Medline Hughes, M. L., Stille, L. J. (2009). Psychophysical and physiological measures of electrical-field interaction in cochlear implants. The Journal of the Acoustical Society of America, 125(1), 247–260. https://doi.org/10.1121/1.3035842
Google Scholar | Crossref | Medline Imennov, N. S., Rubinstein, J. T. (2009). Stochastic Population Model for Electrical Stimulation of the Auditory Nerve. IEEE Transactions on Biomedical Engineering, 56(10), 2493–2501. https://doi.org/10.1109/TBME.2009.2016667
Google Scholar | Crossref | Medline | ISI Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. (T. J. Sejnowski & T. A. Poggio (eds.). The MIT Press.
Google Scholar Jesteadt, W. (1980). An adaptive procedure for subjective judgments. Perception & Psychophysics, 28(1), 85–88. https://doi.org/10.3758/BF03204321
Google Scholar | Crossref | Medline Johnston, J., Forsythe, I. D., Kopp-Scheinpflug, C. (2010). Going native: Voltage-gated potassium channels controlling neuronal excitability. Journal of Physiology, 588(17), 3187–3200. https://doi.org/10.1113/jphysiol.2010.191973
Google Scholar | Crossref | Medline Joshi, S., Dau, T., Epp, B. (2017). A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation. JARO - Journal of the Association for Research in Otolaryngology, 18(2), 323–342. https://doi.org/10.1007/s10162-016-0608-2
Google Scholar | Crossref | Medline Joshi, S., Marozeau, J., Epp, B. (2017). Poster: Low-threshold potassium channels and their effect on polarity sensitivity of the electrically stimulated auditory nerve. Conference on Implantable Auditory Prostheses (CIAP), July 2017, CA, US.
Google Scholar Kawase, T., Liberman, M. (1992). Spatial organization of the auditory nerve according to spontaneous discharge rate. The Journal of Comparative Neurology, 319(2), 312–318. https://pubmed.ncbi.nlm.nih.gov/1381729/.
Google Scholar | Crossref | Medline Kreft, H. A., Donaldson, G. S., Nelson, D. A. (2004). Effects of pulse rate on threshold and dynamic range in Clarion cochlear-implant users (L). The Journal of the Acoustical Society of America, 115(5), 1885–1888. https://doi.org/10.1121/1.1701895
Google Scholar | Crossref | Medline | ISI Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Google Scholar | Crossref Kuznetsova, A., Christensen, R. H. B., Bavay, C., Brockhoff, P. B. (2015). Automated mixed ANOVA modeling of sensory and consumer data. Food Quality and Preference, 40(PA), 31–38. https://doi.org/10.1016/j.foodqual.2014.08.004
Google Scholar | Crossref Landsberger, D. M., Padilla, M., Srinivasan, A. G. (2012). Reducing current spread using current focusing in cochlear implant users. Hearing Research, 284(1–2), 16–24. http://dx.doi.org/10.1016/j.heares.2011.12.009
Google Scholar | Crossref | Medline | ISI Landsberger, D. M., Svrakic, M., Roland, J. T., Svirsky, M. (2015). The Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants. Ear and Hearing, 36(5), e207–e213. http://journals.lww.com/00003446-201509000-00015
Google Scholar | Crossref | Medline | ISI Landsberger, D. M., Vermeire, K., Claes, A., Van Rompaey, V., Van de Heyning, P. (2016). Qualities of Single Electrode Stimulation as a Function of Rate and Place of Stimulation with a Cochlear Implant. Ear & Hearing, 37(3), e149–e159. https://doi.org/10.1097/AUD.0000000000000250
Google Scholar | Crossref | Medline | ISI Leake, P., Snyder, R., Hradek, G. (1993). Spatial organization of inner hair cell synapses and cochlear spiral ganglion neurons. The Journal of Comparative Neurology, 333(2), 257–270. https://pubmed.ncbi.nlm.nih.gov/8345106/
Google Scholar | Crossref | Medline Lenth, R., Singmann, H., Love, J., Buerkner, P., Herve, M. (2021). emmeans-package: Estimated Marginal Means, aka Least-Squares Means. Version 1.7.0. IA, US. https://github.com/rvlenth/emmeans
Google Scholar Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49(2), 467–477. http://www.ncbi.nlm.nih.gov/pubmed/5541744
Google Scholar | Crossref | ISI Liberman, M. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63. https://doi.org/10.1016/0378-5955(80)90007-6
Google Scholar | Crossref | Medline Liberman, M. (1982). The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. The Journal of the Acoustical Society of America, 72(5), 1441–1449. https://pubmed.ncbi.nlm.nih.gov/7175031/
Google Scholar |

留言 (0)

沒有登入
gif