Optical coherence tomography for elucidation of flow-diversion phenomena: The concept of endothelized mural thrombus behind reversible in-stent stenosis in flow-diverters

1. Becske, T, Kallmes, DF, Saatci, I, et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology 2013; 267: 858–868.
Google Scholar | Crossref | Medline | ISI2. Chalouhi, N, Starke, RM, Yang, S, et al. Extending the indications of flow diversion to small, unruptured, saccular aneurysms of the anterior circulation. Stroke 2014; 45: 54–58.
Google Scholar | Crossref | Medline | ISI3. Kallmes, DF, Hanel, R, Lopes, D, et al. International retrospective study of the pipeline embolization device: a multicenter aneurysm treatment study. Am J Neuroradiol 2015; 36: 108–115.
Google Scholar | Crossref | Medline | ISI4. Girdhar, G, Ubl, S, Jahanbekam, R, et al. Thrombogenicity assessment of pipeline, pipeline shield, derivo and P64 flow diverters in an in vitro pulsatile flow human blood loop model. eNeurologicalSci 2019; 14: 77–84.
Google Scholar | Crossref | Medline5. John, S, Bain, MD, Hui, FK, et al. Long-term follow-up of in-stent stenosis after pipeline flow diversion treatment of intracranial aneurysms. Neurosurgery 2016; 78: 862–867.
Google Scholar | Crossref | Medline6. Chalouhi, N, Polifka, A, Daou, B, et al. In-pipeline stenosis: incidence, predictors, and clinical outcomes. Neurosurgery 2015; 77: 875–879; discussion 879.
Google Scholar | Crossref | Medline7. Cohen, JE, Gomori, JM, Moscovici, S, et al. Delayed complications after flow-diverter stenting: reactive in-stent stenosis and creeping stents. J Clin Neurosci 2014; 21: 1116–1122.
Google Scholar | Crossref | Medline | ISI8. Muhl-Benninghaus, R, Haussmann, A, Simgen, A, et al. Transient in-stent stenosis: a common finding after flow diverter implantation. J NeuroIntervent Surg 2019; 11: 196–199.
Google Scholar | Crossref | Medline9. Lopes, D, Sani, S. Histological postmortem study of an internal carotid artery aneurysm treated with the neuroform stent. Neurosurgery 2005; 56: E416; discussion E416–01.
Google Scholar | Crossref | Medline10. Matsuda, Y, Chung, J, Lopes, DK. Analysis of neointima development in flow diverters using optical coherence tomography imaging. J NeuroIntervent Surg 2018; 10: 162–167.
Google Scholar | Crossref | Medline11. Research NRCUIfLA. Guide for the care and use of laboratory animals. Washington, DC: National Academies Press , 1996.
Google Scholar12. Chaabane, C, Otsuka, F, Virmani, R, et al. Biological responses in stented arteries. Cardiovasc Res 2013; 99: 353–363.
Google Scholar | Crossref | Medline | ISI13. Kornowski, R, Hong, MK, Tio, FO, et al. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 1998; 31: 224–230.
Google Scholar | Crossref | Medline | ISI14. Burke, AP, Kolodgie, FD, Farb, A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105: 297–303.
Google Scholar | Crossref | Medline | ISI15. Lylyk, P, Miranda, C, Ceratto, R, et al. Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 2009; 64: 632–642; discussion 642–633; quiz N636.
Google Scholar | Crossref | Medline | ISI16. Becske, T, Brinjikji, W, Potts, MB, et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the pipeline for uncoilable or failed aneurysms trial. Neurosurgery 2017; 80: 40–48.
Google Scholar | Crossref | Medline17. Hanel, RA, Kallmes, DF, Lopes, DK, et al. Prospective study on embolization of intracranial aneurysms with the pipeline device: the PREMIER study 1 year results. J NeuroIntervent Surg 2020; 12: 62–66.
Google Scholar | Crossref | Medline18. Martínez-Galdámez M, Lamin SM, Lagios KG, et al. Treatment of intracranial aneurysms using the pipeline flex embolization device with shield technology: angiographic and safety outcomes at 1-year follow-up. Journal of NeuroInterventional Surgery 2019; 11: 396–399.
Google Scholar | Crossref19. Farb, A, Sangiorgi, G, Carter, AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999; 99: 44–52.
Google Scholar | Crossref | Medline | ISI20. Komatsu, R, Ueda, M, Naruko, T, et al. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. Circulation 1998; 98: 224–233.
Google Scholar | Crossref | Medline | ISI21. Matsuda, Y, Jang, DK, Chung, J, et al. Preliminary outcomes of single antiplatelet therapy for surface-modified flow diverters in an animal model: analysis of neointimal development and thrombus formation using OCT. J Neurointerv Surg 2018; 11: 74–79.
Google Scholar | Crossref | Medline22. Caroff, J, Tamura, T, King, RM, et al. Phosphorylcholine surface modified flow diverter associated with reduced intimal hyperplasia. J NeuroIntervent Surg 2018; 10: 1097–1101.
Google Scholar | Crossref | Medline23. Harnek, J, Zoucas, E, Carlemalm, E, et al. Differences in endothelial injury after balloon angioplasty, insertion of balloon-expanded stents or release of self-expanding stents: an electron microscopic experimental study. Cardiovasc Interv Radiol 1999; 22: 56–61.
Google Scholar | Crossref | Medline24. Steele, PM, Chesebro, JH, Stanson, AW, et al. Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res 1985; 57: 105–112.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif