Murburn precepts for lactic‐acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen

It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any “smart decision-making” or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of “lactic acidosis” (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.

留言 (0)

沒有登入
gif