Analysis of human glioma-associated co-inhibitory immune checkpoints in glioma microenvironment and peripheral blood

1. Ohgaki, H (2009) Epidemiology of brain tumors. Methods in Molecular Biology 472: 323–342.
Google Scholar | Crossref | Medline2. Mitchell, DA, Sampson, JH (2009) Toward effective immunotherapy for the treatment of malignant brain tumors. Neurotherapeutics 6(3): 527–538.
Google Scholar | Crossref | Medline3. Okada, H, Kohanbash, G, Zhu, X, et al. (2009) Immunotherapeutic approaches for glioma. Critical Reviews in Immunology 29(1): 1–42.
Google Scholar | Crossref | Medline4. Network, TC (2013) Corrigendum: comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 494(7438): 506–506.
Google Scholar | Crossref | Medline5. Larkin, J, Chiarion-Sileni, V, Gonzalez, R, et al. (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. New England Journal of Medicine 373(1): 23–34.
Google Scholar | Crossref | Medline | ISI6. Brahmer, J, Reckamp, KL, Baas, P, et al. (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New England Journal of Medicine 373(2): 123–135.
Google Scholar | Crossref | Medline | ISI7. Motzer, RJ, Escudier, B, McDermott, DF, et al. (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. New England Journal of Medicine 373(19): 1803–1813.
Google Scholar | Crossref | Medline | ISI8. Topalian, SL, Sznol, M, McDermott, DF, et al. (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology 32(10): 1020–1030.
Google Scholar | Crossref | Medline | ISI9. Hamid, O, Robert, C, Daud, A, et al. (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New England Journal of Medicine 369(2): 134–144.
Google Scholar | Crossref | Medline | ISI10. Borghaei, H, Paz-Ares, L, Horn, L, et al. (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine 373(17): 1627–1639.
Google Scholar | Crossref | Medline | ISI11. Garon, EB, Rizvi, NA, Hui, R, et al. (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. New England Journal of Medicine 372(21): 2018–2028.
Google Scholar | Crossref | Medline12. Filley, AC, Henriquez, M, Dey, M (2017) Recurrent glioma clinical trial, CheckMate-143: the game is not over yet. Oncotarget 8(53): 91779–91794.
Google Scholar | Crossref | Medline13. Garg, AD, Vandenberk, L, Van Woensel, M, et al. (2017) Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology 6(4): e1295903.
Google Scholar | Crossref | Medline14. Parney, IF, Waldron, JS, Parsa, AT (2009) Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. Journal of Neurosurgery 110(3): 572–582.
Google Scholar | Crossref | Medline15. Hambardzumyan, D, Gutmann, DH, Kettenmann, H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nature Neuroscience 19(1): 20–27.
Google Scholar | Crossref | Medline16. Tremble, LF, Forde, PF, Soden, DM (2017) Clinical evaluation of macrophages in cancer: role in treatment, modulation and challenges. Cancer Immunology, Immunotherapy 66(12): 1509–1527.
Google Scholar | Crossref | Medline17. Topalian, SL, Drake, CG, Pardoll, DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450-461.
Google Scholar | Crossref | Medline | ISI18. Havel, JJ, Chowell, D, Chan, TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer 19(3): 133–150.
Google Scholar | Crossref | Medline19. Wang, X, Guo, G, Guan, H, et al. (2019) Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. Journal of Experimental & Clinical Cancer Research 38(1): 87.
Google Scholar | Crossref | Medline20. Simonelli, M, Persico, P, Perrino, M, et al. (2018) Checkpoint inhibitors as treatment for malignant gliomas: “a long way to the top”. Cancer Treatment Reviews 69: 121–131.
Google Scholar | Crossref | Medline21. Yi, M, Yu, S, Qin, S, et al. (2018) Gut microbiome modulates efficacy of immune checkpoint inhibitors. Journal of Hematology & Oncology 11(1): 47.
Google Scholar | Crossref | Medline22. Andrews, LP, Marciscano, AE, Drake, CG, et al. (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunological Reviews 276(1):80–96.
Google Scholar | Crossref | Medline23. Monney, L, Sabatos, CA, Gaglia, JL, et al. (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871): 536–541.
Google Scholar | Crossref | Medline | ISI24. Qin, S, Xu, L, Yi, M, et al. (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Molecular Cancer 18(1): 155.
Google Scholar | Crossref | Medline25. Ceeraz, S, Nowak, EC, Noelle, RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends in Immunology 34(11): 556–563.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif