Bulky selenium ligand stabilized trans‐palladium dichloride complexes as catalyst for silver‐free decarboxylative coupling of coumarin‐3‐carboxylic acids

This report describes synthesis of three new trans -palladium dichloride complexes of bulky selenium ligands. These complexes possess a Cl−Pd−Cl rotor spoke attached to a Se−Pd−Se axle. The new ligands and palladium complexes ( C1 - C3 ) were characterized with the help of NMR, HRMS, UV-Vis., IR, and elemental analysis. The single crystal structure of metal complex C2 confirmed a square planer geometry of complex with trans -orientation. The X-ray structure revealed intramolecular secondary interactions (SeCH---Cl) between chlorine of PdCl 2 and CH 2 proton of selenium ligand. Variable temperature NMR data shows coalescence of diastereotopic protons, which indicates pyramidal inversion of selenium atom at elevated temperature. The relaxed potential energy scan of C2 suggests a rotational barrier of ~12.5 kcal/mol for rotation of chlorine atom through Cl-Pd-Cl rotor. The complex C3 possess dual intramolecular secondary interactions (OCH 2 ---Cl and SeCH 2 ---Cl) with stator ligand. Molecular rotor C2 was found to be most efficient catalyst for the decarboxylative Heck-coupling under mild reaction conditions. The protocol is applicable to a broad range of substrates with large functional group tolerance and low catalyst loading (2.5 mol %). The mechanism of decarboxylative Heck-coupling reaction was investigated through experimental and computational studies. Importantly the reaction works under silver-free conditions which reduces the cost of overall protocol. Further, the catalyst also worked for decarboxylative arylation and decarboxylative Suzuki-Miyaura coupling reactions with good yields of the coupled products.

留言 (0)

沒有登入
gif