Relationship of Notch Signal, Surfactant Protein A, and Indomethacin in Cervix During Preterm Birth: Mast Cell and Jagged-2 May Be Key in Understanding Infection-mediated Preterm Birth

1. Nour, NM. Premature delivery and the millennium development goal. Rev Obstet Gynecol. 2012;5(2):100–5.
Google Scholar2. Walani, SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150(1):31–3. doi:10.1002/ijgo.13195.
Google Scholar | Crossref3. Blencowe, H, Cousens, S, Oestergaard, MZ, Chou, D, Moller, AB, Narwal, R, Adler, A, Vera Garcia, C, Rohde, S, Say, L, Lawn, JE. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–72. doi:10.1016/S0140-6736(12)60820-4.
Google Scholar | Crossref4. Romero, R, Espinoza, J, Goncalves, LF, Kusanovic, JP, Friel, L, Hassan, S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39. doi:10.1055/s-2006-956773.
Google Scholar | Crossref | Medline5. Shim, SS, Romero, R, Hong, JS, Park, CW, Jun, JK, Kim, BI, Yoon, BH. Clinical significance of intra-amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 2004;191(4):1339–45. doi:10.1016/j.ajog.2004.06.085.
Google Scholar | Crossref6. Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi:10.1016/S0140-6736(08)60074-4.
Google Scholar | Crossref | Medline7. Jaiswal, MK, Agrawal, V, Pamarthy, S, Katara, GK, Kulshrestha, A, Gilman-Sachs, A, Beaman, KD, Hirsch, E. Notch signaling in inflammation-induced preterm labor. Sci Rep. 2015;5:15221. doi:10.1038/srep15221.
Google Scholar | Crossref | Medline8. Radtke, F, Fasnacht, N, Macdonald, HR. Notch signaling in the immune system. Immunity. 2010;32(1):14–27. doi:10.1016/j.immuni.2010.01.004.
Google Scholar | Crossref | Medline9. Schweisguth, F. Regulation of notch signaling activity. Curr Biol. 2004;14(3):R129–38.
Google Scholar | Crossref10. Bray, SJ. Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–89. doi:10.1038/nrm2009.
Google Scholar | Crossref11. Ersvaer, E, Hatfield, KJ, Reikvam, H, Bruserud, O. Future perspectives: therapeutic targeting of notch signaling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. Bone Marrow Res. 2011;2011:570796. doi:10.1155/2011/570796.
Google Scholar | Crossref12. Suman, S, Das, TP, Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer. 2013;109(10):2587–96. doi:10.1038/bjc.2013.642.
Google Scholar | Crossref13. Acien, P. Embryological observations on the female genital tract. Hum Reprod. 1992;7(4):437–45. doi:10.1093/oxfordjournals.humrep.a137666.
Google Scholar | Crossref14. Buckingham, JC, Selden, R, Danforth, DN. Connective tissue changes in the cervix during pregnancy and labor. Ann NY Acad Sci. 1962;97:733–42. doi:10.1111/j.1749-6632.1962.tb34682.x.
Google Scholar | Crossref15. Bellad, MB, Tara, D, Ganachari, MS, Mallapur, MD, Goudar, SS, Kodkany, BS, Sloan, NL, Derman, R. Prevention of postpartum haemorrhage with sublingual misoprostol or oxytocin: a double-blind randomised controlled trial. BJOG. 2012;119(8):975–82; discussion 982–6. doi:10.1111/j.1471-0528.2012.03341.x.
Google Scholar | Crossref16. Speroff, LGR, Kase, NG. Clinical gynecologic endocrinology and i̇nfertility. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 1994. p. 291–317.
Google Scholar17. Bugalho, A, Daniel, A, Faundes, A, Cunha, M. Misoprostol for prevention of postpartum hemorrhage. Int J Gynaecol Obstet. 2001;73(1):1–6. doi:10.1016/s0020-7292(01)00346-0.
Google Scholar | Crossref | Medline18. Loudon, JA, Groom, KM, Bennett, PR. Prostaglandin inhibitors in preterm labour. Best Pract Res Clin Obstet Gynaecol. 2003;17(5):731–44. doi:10.1016/s1521-6934(03)00047-6.
Google Scholar | Crossref19. Quaas, L, Goppinger, A, Zahradnik, HP. The effect of acetylsalicylic acid and indomethacin on the catecholamine- and oxytocin-induced contractility and prostaglandin (6-keto-PGF1 alpha, PGF2 alpha)-production of human pregnant myometrial strips. Prostaglandins. 1987;34(2):257–69. doi:10.1016/0090-6980(87)90248-6.
Google Scholar | Crossref20. Kalgutkar, AS, Crews, BC, Rowlinson, SW, Marnett, AB, Kozak, KR, Remmel, RP, Marnett, LJ. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal anti-inflammatory drugs to potent and highly selective COX-2 inhibitors. Proc Natl Acad Sci USA. 2000;97(2):925–30. doi:10.1073/pnas.97.2.925.
Google Scholar | Crossref21. Doggrell, SA. Recent pharmacological advances in the treatment of preterm membrane rupture, labour and delivery. Expert Opin Pharmacother. 2004;5(9):1917–28. doi:10.1517/14656566.5.9.1917.
Google Scholar | Crossref22. Vermillion, ST, Landen, CN. Prostaglandin inhibitors as tocolytic agents. Semin Perinatol. 2001;25(4):256–62. doi:10.1053/sper.2001.27549.
Google Scholar | Crossref23. Bando, T, Fujita, S, Nagano, N, Yoshikawa, S, Yamanishi, Y, Minami, M, Karasuyama, H. Differential usage of COX-1 and COX-2 in prostaglandin production by mast cells and basophils. Biochem Biophys Rep. 2017;10:82–7. doi:10.1016/j.bbrep.2017.03.004.
Google Scholar | Crossref24. Bytautiene, E, Vedernikov, YP, Saade, GR, Romero, R, Garfield, RE. Degranulation of uterine mast cell modifies contractility of isolated myometrium from pregnant women. Am J Obstet Gynecol. 2004;191(5):1705–10. doi:10.1016/j.ajog.2004.04.008.
Google Scholar | Crossref25. Garfield, RE, Bytautiene, E, Vedernikov, YP, Marshall, JS, Romero, R. Modulation of rat uterine contractility by mast cells and their mediators. Am J Obstet Gynecol. 2000;183(1):118–25. doi:10.1067/mob.2000.105741.
Google Scholar | Crossref26. Petraglia, F, Arcuri, F, de Ziegler, D, Chapron, C. Inflammation: a link between endometriosis and preterm birth. Fertil Steril. 2012;98(1):36–40. doi:10.1016/j.fertnstert.2012.04.051.
Google Scholar | Crossref | Medline27. Avci, S, Simsek, M, Soylu, H, Ustunel, I. Misoprostol-induced modification of the notch signaling pathway in the human cervix. Reprod Sci. 2019;26(7):909–17. doi:10.1177/1933719118799208.
Google Scholar | SAGE Journals28. Dubicke, A, Ekman-Ordeberg, G, Mazurek, P, Miller, L, Yellon, SM. Density of stromal cells and macrophages associated with collagen remodeling in the human cervix in preterm and term birth. Reprod Sci. 2016;23(5):595–603. doi:10.1177/1933719115616497.
Google Scholar | SAGE Journals29. Yao, Y, Xu, XH, Jin, L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792. doi:10.3389/fimmu.2019.00792.
Google Scholar | Crossref | Medline30. Kawai, T, Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–84. doi:10.1038/ni.1863.
Google Scholar | Crossref31. Baum, A, Garcia-Sastre, A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids. 2010;38(5):1283–99. doi:10.1007/s00726-009-0374-0.
Google Scholar | Crossref32. Henning, LN, Azad, AK, Parsa, KV, Crowther, JE, Tridandapani, S, Schlesinger, LS. Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol. 2008;180(12):7847–58. doi:10.4049/jimmunol.180.12.7847.
Google Scholar | Crossref33. Liew, FY, Xu, D, Brint, EK, O’Neill, LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5(6):446–58. doi:10.1038/nri1630.
Google Scholar | Crossref34. Beutler, B, Du, X, Poltorak, A. Identification of toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J Endotoxin Res. 2001;7(4):277–80.
Google Scholar | SAGE Journals35. Kuzmich, NN, Sivak, KV, Chubarev, VN, Porozov, YB, Savateeva-Lyubimova, TN, Peri, F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 2017;5(4). doi:10.3390/vaccines5040034.
Google Scholar | Crossref36. Kim, Y, Kim, M, Kim, G, Chaiworapongsa, T, Gomez, R, Camacho, N, Yoon, B, Romero, R. The uterine cervix expresses the pattern-recognition receptors: toll-like receptors-2 and-4. AJOG. 2003;189(6):S103. doi:10.1016/j.ajog.2003.10.139.
Google Scholar | Crossref37. Yanxiang Cheng, GCWX, Huang, Y, Ding, J, Huang, J, Hong, L. TLR4 may accelerate hypoxia reaction to promote the occurrence and progress of cervical lesions by infected pathogenic microorganisms other than HPV. J Cancer Ther. 2013;4:549–53.
Google Scholar38. Kim, YM, Romero, R, Chaiworapongsa, T, Kim, GJ, Kim, MR, Kuivaniemi, H, Tromp, G, Espinoza, J, Bujold, E, Abrahams, VM, Mor, G. Toll-like receptor-2 and -4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol. 2004;191(4):1346–55. doi:10.1016/j.ajog.2004.07.009.
Google Scholar | Crossref39. Adams Waldorf, KM, Persing, D, Novy, MJ, Sadowsky, DW, Gravett, MG. Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci. 2008;15(2):121–7. doi:10.1177/1933719107310992.
Google Scholar | SAGE Journals40. Wright, JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5(1):58–68. doi:10.1038/nri1528.
Google Scholar | Crossref41. Gardai, SJ, Xiao, YQ, Dickinson, M, Nick, JA, Voelker, DR, Greene, KE, Henson, PM. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell. 2003;115(1):13–23.
Google Scholar | Crossref42. Gibson, AT. Surfactant and the neonatal lung. Br J Hosp Med. 1997;58(8):381–4, 397.
Google Scholar43. Goldmann, T, Kahler, D, Schultz, H, Abdullah, M, Lang, DS, Stellmacher, F, Vollmer, E. On the significance of surfactant protein-A within the human lungs. Diagn Pathol. 2009;4:8. doi:10.1186/1746-1596-4-8.
Google Scholar | Crossref | Medline44. El-Gendy, N, Kaviratna, A, Berkland, C, Dhar, P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Ther Deliv. 2013;4(8):951–80. doi:10.4155/tde.13.72.
Google Scholar | Crossref45. Snegovskikh, VV, Bhandari, V, Wright, JR, Tadesse, S, Morgan, T, Macneill, C, Foyouzi, N, Park, JS, Wang, Y, Norwitz, ER. Surfactant protein-A (SP-A) selectively inhibits prostaglandin F2alpha (PGF2alpha) production in term decidua: implications for the onset of labor. J Clin Endocrinol Metab. 2011;96(4):E624–32. doi:10.1210/jc.2010-1496.
Google Scholar | Crossref46. O’Keefe, SJ, Spitaels, JM, Mannion, G, Naiker, N. Misoprostol, a synthetic prostaglandin E1 analogue, in the treatment of duodenal ulcers. A double-blind, cimetidine-controlled trial. S Afr Med J. 1985;67(9):321–4.
Google Scholar47. Sones, JL, Davisson, RL. Preeclampsia, of mice and women. Physiol Genomics. 2016;48(8):565–72. doi:10.1152/physiolgenomics.00125.2015.
Google Scholar | Crossref48. Zhang, YH, He, M, Wang, Y, Liao, AH. Modulators of the balance between M1 and M2 Macrophages during pregnancy. Front Immunol. 2017;8:120. doi:10.3389/fimmu.2017.00120.
Google Scholar | Crossref | Medline49. Agrawal, V, Jaiswal, MK, Mallers, T, Katara, GK, Gilman-Sachs, A, Beaman, KD, Hirsch, E. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci Rep. 2015;5:9410. doi:10.1038/srep09410.
Google Scholar | Crossref50. Altshuler, G, Krous, HF, Altmiller, DH, Sharpe, GL. Premature onset of labor, neonatal patent ductus arteriosus, and prostaglandin synthetase antagonists–a rat model of a human problem. Am J Obstet Gynecol. 1979;135(2):261–5. doi:10.1016/0002-9378(79)90356-9.
Google Scholar | Crossref51. Lai, JH, Hung, CY, Chu, CH, Chen, CJ, Lin, HH, Lin, HJ, Lin, CC. A randomized trial comparing the efficacy of single-dose and double-dose administration of rectal indomethacin in preventing post-endoscopic retrograde cholangiopancreatography pancreatitis. Medicine (Baltimore). 2019;98(20):e15742. doi:10.1097/MD.0000000000015742.
Google Scholar | Crossref52. Canadas, O, Garcia-Verdugo, I, Keough, KM, Casals, C. SP-A permeabilizes lipopolysaccharide membranes by forming protein aggregates that extract lipids from the membrane. Biophys J. 2008;95(7):3287–94. doi:10.1529/biophysj.108.137323.
Google Scholar | Crossref53. Ruano, ML, Garcia-Verdugo, I, Miguel, E, Perez-Gil, J, Casals, C. Self-aggregation of surfactant protein A. Biochemistry. 2000;39(21):6529–37. doi:10.1021/bi000188z.

留言 (0)

沒有登入
gif