Dysregulation of tRNA-derived small RNAs and their potential roles in lupus nephritis

1. Kronbichler, A, Brezina, B, Gauckler, P, et al. Refractory lupus nephritis: when, why and how to treat. Autoimmun Rev 2019; 18: 510–518.
Google Scholar | Crossref | Medline2. Chan, TM . Treatment of severe lupus nephritis: the new horizon. Nat Rev Nephrol 2015; 11: 46–61.
Google Scholar | Crossref | Medline | ISI3. Musa, R, Brent, LH, Qurie, A. Lupus Nephritis. StatPearls. Treasure Island (FL)Copyright © 2021. StatPearls PublishingStatPearls Publishing LLC., 2021.
Google Scholar4. Parikh, SV, Almaani, S, Brodsky, S, et al. Update on lupus nephritis: core curriculum 2020. Am J Kidney Dis 2020; 76: 265–281.
Google Scholar | Crossref | Medline5. de Zubiria Salgado, A, Herrera-Diaz, C. Lupus nephritis: an overview of recent findings. Autoimmun Dis 2012; 2012: 849684.
Google Scholar | Medline6. Park, J, Ahn, SH, Shin, MG, et al. tRNA-derived small RNAs: novel epigenetic regulators. Cancers 2020; 12: 2773.
Google Scholar | Crossref7. Zhu, L, Liu, X, Pu, W, et al. tRNA-derived small non-coding RNAs in human disease. Cancer Lett 2018; 419: 1–7.
Google Scholar | Crossref | Medline8. Zhu, L, Li, J, Gong, Y, et al. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 2019; 18: 74.
Google Scholar | Crossref | Medline9. Li, S, Liu, Y, He, X, et al. tRNA-derived fragments in podocytes with adriamycin-induced injury reveal the potential mechanism of idiopathic nephrotic syndrome. Biomed Res Int 2020; 2020: 7826763.
Google Scholar | Medline10. Shi, H, Yu, M, Wu, Y, et al. tRNA-derived fragments (tRFs) contribute to podocyte differentiation. Biochem Biophys Res Commun 2020; 521: 1–8.
Google Scholar | Crossref | Medline11. Xu, H, Chen, W, Zheng, F, et al. The potential role of tRNAs and small RNAs derived from tRNAs in the occurrence and development of systemic lupus erythematosus. Biochem Biophys Res Commun 2020; 527: 561–567.
Google Scholar | Crossref | Medline12. Luo, ZF, Tang, D, Xu, HX, et al. Differential expression of transfer RNA-derived small RNAs in IgA nephropathy. Medicine 2020; 99: e23437.
Google Scholar | Crossref | Medline13. Petri, M, Orbai, AM, Alarcón, GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 2012; 64: 2677–86.
Google Scholar | Crossref | Medline14. Hahn, BH, McMahon, MA, Wilkinson, A, et al. American college of rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 2012; 64: 797–808.
Google Scholar | Crossref | Medline | ISI15. Gasparotto, M, Gatto, M, Binda, V, et al. Lupus nephritis: clinical presentations and outcomes in the 21st century. Rheumatol 2020; 59: v39–v51.
Google Scholar | Crossref | Medline16. Shen, L, Hong, X, Zhou, W, et al. Expression profiles of tRNA-derived fragments and their potential roles in ovarian endometriosis. Epigenomics 2020; 12: 183–197.
Google Scholar | Crossref | Medline17. Han, X, Cai, L, Lu, Y, et al. Identification of tRNA-derived fragments and their potential roles in diabetic cataract rats. Epigenomics 2020; 12: 1405–1418.
Google Scholar | Crossref | Medline18. Anders, HJ, Saxena, R, Zhao, MH, et al. Lupus nephritis. Nat Rev Dis Primers 2020; 6: 7.
Google Scholar | Crossref | Medline19. Kumar, P, Kuscu, C, Dutta, A. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41: 679–689.
Google Scholar | Crossref | Medline20. Maute, RL, Schneider, C, Sumazin, P, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci 2013; 110: 1404–1409.
Google Scholar | Crossref | Medline | ISI21. Krasoudaki, E, Banos, A, Stagakis, E, et al. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2016; 31: 1676–1686.
Google Scholar | Crossref | Medline22. Lech, M, Weidenbusch, M, Kulkarni, OP, et al. IRF4 deficiency abrogates lupus nephritis despite enhancing systemic cytokine production. J Am Soc Nephrol 2011; 22: 1443–1452.
Google Scholar | Crossref | Medline | ISI23. Goel, RR, Wang, X, O’Neil, LJ, et al. Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. Proc Natl Acad Sci 2020; 117: 5409–5419.
Google Scholar | Crossref | Medline24. Ding, Y, Tan, Y, Qu, Z, et al. Renal microvascular lesions in lupus nephritis. Ren Fail 2020; 42: 19–29.
Google Scholar | Crossref | Medline25. Nakatani, K, Fujii, H, Hasegawa, H, et al. Endothelial adhesion molecules in glomerular lesions: association with their severity and diversity in lupus models. Kidney Int 2004; 65: 1290–1300.
Google Scholar | Crossref | Medline26. Parodis, I, Gokaraju, S, Zickert, A, et al. ALCAM and VCAM-1 as urine biomarkers of activity and long-term renal outcome in systemic lupus erythematosus. Rheumatol 2020; 59: 2237–2249.
Google Scholar | Crossref | Medline27. Zhao, C, Gu, Y, Chen, L, et al. Upregulation of FoxO3a expression through PI3K/Akt pathway attenuates the progression of lupus nephritis in MRL/lpr mice. Int Immunopharmacology 2020; 89: 107027.
Google Scholar | Crossref | Medline28. Teichmann, LL, Cullen, JL, Kashgarian, M, et al. Local triggering of the ICOS coreceptor by CD11c+ myeloid cells drives organ inflammation in lupus. Immunity 2015; 42: 552–565.
Google Scholar | Crossref | Medline29. Liu, Y, Deng, W, Meng, Q, et al. CD8+iTregs attenuate glomerular endothelial cell injury in lupus-prone mice through blocking the activation of p38 MAPK and NF-κB. Mol Immunol 2018; 103: 133–143.
Google Scholar | Crossref | Medline30. Fleischer, SJ, Daridon, C, Fleischer, V, et al. Enhanced tyrosine phosphatase activity underlies dysregulated B Cell receptor signaling and promotes survival of human lupus B cells. Arthritis Rheumatol 2016; 68: 1210–21.
Google Scholar | Medline

留言 (0)

沒有登入
gif