ACL Size, but Not Signal Intensity, Is Influenced by Sex, Body Size, and Knee Anatomy

1. Anderson, AF, Dome, DC, Gautam, S, Awh, MH, Rennirt, GW. Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med. 2001;29(1):58–66.
Google Scholar | SAGE Journals | ISI2. Arendt, E, Agel, J, Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999;34(2):86–92.
Google Scholar | Medline | ISI3. Arendt, E, Randall, D. Knee injury patterns among men and women in collegiate basketball and soccer. AJSM. 1995;23(6):694–701.
Google Scholar4. Beveridge, JE, Machan, JT, Walsh, EG, et al. Magnetic resonance measurements of tissue quantity and quality using T2* relaxometry predict temporal changes in the biomechanical properties of the healing ACL. J Orthop Res. 2018;36(6):1701–1709.
Google Scholar | Crossref | Medline5. Beveridge, JE, Proffen, BL, Karamchedu, NP, et al. Cartilage damage is related to ACL stiffness in a porcine model of ACL repair. J Orthop Res. 2019;37(10):2249–2257.
Google Scholar | Crossref | Medline6. Beveridge, JE, Walsh, EG, Murray, MM, Fleming, BC. Sensitivity of ACL volume and T2(*) relaxation time to magnetic resonance imaging scan conditions. J Biomech. 2017;56:117–121.
Google Scholar | Crossref | Medline7. Beynnon, BD, Hall, JS, Sturnick, DR, et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med. 2014;42(5):1039–1048.
Google Scholar | SAGE Journals | ISI8. Biercevicz, AM, Akelman, MR, Fadale, PD, et al. MRI volume and signal intensity of ACL graft predict clinical, functional, and patient-oriented outcome measures after ACL reconstruction. Am J Sports Med. 2015;43(3):693–699.
Google Scholar | SAGE Journals | ISI9. Biercevicz, AM, Miranda, DL, Machan, JT, Murray, MM, Fleming, BC. In situ, noninvasive, T2*-weighted MRI-derived parameters predict ex vivo structural properties of an anterior cruciate ligament reconstruction or bioenhanced primary repair in a porcine model. Am J Sports Med. 2013;41(3):560–566.
Google Scholar | SAGE Journals | ISI10. Biercevicz, AM, Murray, MM, Walsh, EG, et al. T2* MR relaxometry and ligament volume are associated with the structural properties of the healing ACL. J Orthop Res. 2014;32(4):492–499.
Google Scholar | Crossref | Medline | ISI11. Biercevicz, AM, Proffen, BL, Murray, MM, Walsh, EG, Fleming, BC. T2* relaxometry and volume predict semi-quantitative histological scoring of an ACL bridge-enhanced primary repair in a porcine model. J Orthop Res. 2015;33(8):1180–1187.
Google Scholar | Crossref | Medline | ISI12. Cameron, KL, Peck, KY, Thompson, BS, et al. Reference values for the Marx Activity Rating Scale in a young athletic population: history of knee ligament injury is associated with higher scores. Sports Health. 2015;7(5):403–408.
Google Scholar | SAGE Journals | ISI13. Chandrashekar, N, Slauterbeck, J, Hashemi, J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med. 2005;33(10):1492–1498.
Google Scholar | SAGE Journals | ISI14. Charlton, WPH, St John, TA, Ciccotti, MG, Harrison, N, Schweitzer, M. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30:329–333.
Google Scholar | SAGE Journals | ISI15. Chaudhari, AM, Zelman, EA, Flanigan, DC, Kaeding, CC, Nagaraja, HN. Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. Am J Sports Med. 2009;37(7):1282–1287.
Google Scholar | SAGE Journals | ISI16. Christensen, JJ, Krych, AJ, Engasser, WM, et al. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(10):2510–2514.
Google Scholar | SAGE Journals | ISI17. Davis, TJ, Shelbourne, KD, Klootwyk, TE. Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc. 1999;7(4):209–214.
Google Scholar | Crossref | Medline | ISI18. Dienst, M, Schneider, G, Altmeyer, K, et al. Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg. 2007;127(4):253–260.
Google Scholar | Crossref | Medline | ISI19. Eliasziw, M, Young, SL, Woodbury, MG, Fryday-Field, K. Statistical methodology for the concurrent assessment of interrater and intrarater reliability: using goniometric measurements as an example. Phys Ther. 1994;74(8):777–788.
Google Scholar | Crossref | Medline | ISI20. Fayad, LM, Rosenthal, EH, Morrison, WB, Carrino, JA. Anterior cruciate ligament volume: analysis of gender differences. J Magn Reson Imaging. 2008;27(1):218–223.
Google Scholar | Crossref | Medline21. Fleming, BC, Vajapeyam, S, Connolly, SA, Magarian, EM, Murray, MM. The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech. 2011;44(16):2843–2846.
Google Scholar | Crossref | Medline | ISI22. Grassi, A, Bailey, JR, Signorelli, C, et al. Magnetic resonance imaging after anterior cruciate ligament reconstruction: a practical guide. World J Orthop. 2016;7(10):638–649.
Google Scholar | Crossref | Medline23. Grassi, A, Macchiarola, L, Urrizola Barrientos, F, et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med. 2019;47(2):285–295.
Google Scholar | SAGE Journals | ISI24. Gwinn, DE, Wilckens, JH, McDevitt, ER, Ross, G, Kao, T. The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med. 2000;28(1):98–102.
Google Scholar | SAGE Journals | ISI25. Hashemi, J, Chandrashekar, N, Gill, B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90(12):2724–2734.
Google Scholar | Crossref | Medline | ISI26. Hashemi, J, Chandrashekar, N, Mansouri, H, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62.
Google Scholar | SAGE Journals | ISI27. Hashemi, J, Chandrashekar, N, Mansouri, H, Slauterbeck, JR, Hardy, DM. The human anterior cruciate ligament: sex differences in ultrastructure and correlation with biomechanical properties. J Orthop Res. 2008;26(7):945–950.
Google Scholar | Crossref | Medline | ISI28. Hashemi, J, Mansouri, H, Chandrashekar, N, et al. Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament. J Orthop Res. 2011;29(7):993–1001.
Google Scholar | Crossref | Medline | ISI29. Hewett, TE, Myer, GD, Ford, KR. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311.
Google Scholar | SAGE Journals | ISI30. Hosseinzadeh, S, Kiapour, AM. Age-related changes in ACL morphology during skeletal growth and maturation are different between females and males. J Orthop Res. 2021;39(4):841–849.
Google Scholar | Crossref | Medline31. Howell, SM, Barad, SJ. Knee extension and its relationship to the slope of the intercondylar roof. Implications for positioning the tibial tunnel in anterior cruciate ligament reconstructions. Am J Sports Med. 1995;23:288–294.
Google Scholar | SAGE Journals | ISI32. Hudek, R, Schmutz, S, Regenfelder, F, Fuchs, B, Koch, PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467(8):2066–2072.
Google Scholar | Crossref | Medline | ISI33. Jamison, ST, Flanigan, DC, Nagaraja, HN, Chaudhari, AM. Side-to-side differences in anterior cruciate ligament volume in healthy control subjects. J Biomech. 2010;43(3):576–578.
Google Scholar | Crossref | Medline34. Kiapour, AM, Ecklund, K, Murray, MM, et al. Changes in cross-sectional area and signal intensity of healing anterior cruciate ligaments and grafts in the first 2 years after surgery. Am J Sports Med. 2019;47(8):1831–1843.
Google Scholar | SAGE Journals | ISI35. Kiapour, AM, Yang, DS, Badger, GJ, et al. Anatomic features of the tibial plateau predict outcomes of ACL reconstruction within 7 years after surgery. Am J Sports Med. 2019;47(2):303–311.
Google Scholar | SAGE Journals | ISI36. Komatsuda, T, Sugita, T, Sano, H, et al. Does estrogen alter the mechanical properties of the anterior cruciate ligament? An experimental study in rabbits. Acta Orthop. 2006;77(6):973–980.
Google Scholar | Crossref | Medline | ISI37. Levins, JG, Sturnick, DR, Argentieri, EC, et al. Geometric risk factors associated with noncontact anterior cruciate ligament graft rupture. Am J Sports Med. 2016;44(10):2537–2545.
Google Scholar | SAGE Journals | ISI38. Li, H, Chen, S, Tao, H, Li, H, Chen, S. Correlation analysis of potential factors influencing graft maturity after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2014;2(10):2325967114553552.
Google Scholar | SAGE Journals39. Li, H, Tao, H, Cho, S, et al. Difference in graft maturity of the reconstructed anterior cruciate ligament 2 years postoperatively: a comparison between autografts and allografts in young men using clinical and 3.0-T magnetic resonance imaging evaluation. Am J Sports Med. 2012;40(7):1519–1526.
Google Scholar | SAGE Journals | ISI40. Li, H, Zeng, C, Wang, Y, et al. Association between magnetic resonance imaging-measured intercondylar notch dimensions and anterior cruciate ligament injury: a meta-analysis. Arthroscopy. 2018;34(3):889–900.
Google Scholar | Crossref | Medline41. Li, Y, Hong, L, Feng, H, et al. Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med. 2014;42(4):927–933.
Google Scholar | SAGE Journals | ISI42. Lipps, DB, Wilson, AM, Ashton-Miller, JA, Wojtys, EM. Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med. 2012;40(12):2731–2736.
Google Scholar | SAGE Journals | ISI43. Murray, MM, Fleming, BC, Badger, GJ, et al. Bridge-enhanced anterior cruciate ligament repair is not inferior to autograft anterior cruciate ligament reconstruction at 2 years: results of a prospective randomized clinical trial. Am J Sports Med. 2020;48(6):1305–1315.
Google Scholar | SAGE Journals | ISI44. Murray, MM, Kalish, LA, Fleming, BC, et al. Bridge-enhanced anterior cruciate ligament repair: two-year results of a first-in-human study. Orthop J Sports Med. 2019;7(3):232596711882435.
Google Scholar | SAGE Journals | ISI45. Murray, MM, Kiapour, AM, Kalish, LA, et al. Predictors of healing ligament size and magnetic resonance signal intensity at 6 months after bridge-enhanced anterior cruciate ligament repair. Am J Sports Med. 2019;47(6):1361–1369.
Google Scholar | SAGE Journals | ISI46. Napier, RJ, Garcia, E, Devitt, BM, Feller, JA, Webster, KE. Increased radiographic posterior tibial slope is associated with subsequent injury following revision anterior cruciate ligament reconstruction. Orthop J Sports Med. 2019;7(11):2325967119879373.
Google Scholar | SAGE Journals | ISI47. Park, JS, Nam, DC, Kim, DH, Kim, HK, Hwang, SC. Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res. 2012;24(3):180–185.
Google Scholar

留言 (0)

沒有登入
gif