A novel method for providing scaffold: Decellularization of parathyroid capsule

1. Sadler, GP, Clark, OH, Heerden, J, et al. Thyroid and Parathyroid. In: Brunicardi FC (ed) Schwartz SI, Principles of Surgery. New York: McGraw-Hill, 1999, pp. 1694–1710.
Google Scholar2. Lee, NJ, Blakey, JD, Bhuta, S, et al. Unintentional parathyroidectomy during thyroidectomy. Laryngoscope 1999; 109: 1238–1240.
Google Scholar | Crossref | Medline | ISI3. Brandi, ML, Bilezikian, JP, Shoback, D, et al. Management of hypoparathyroidism: summary statement and guidelines. J Clin Endocrinol Metab 2016; 101: 2273–2283.
Google Scholar | Crossref | Medline4. Bilezikian, JP, Brandi, ML, Cusano, NE, et al. Management of hypoparathyroidism: Present and future. J Clin Endocrinol Metab 2016; 101(6): 2313–2324. Endocrine Society
Google Scholar | Crossref | Medline5. Apetrii, M, Goldsmith, D, Nistor, I, et al. Impact of surgical parathyroidectomy on chronic kidney disease-mineral and bone disorder (CKD-MBD)–a systematic review and meta-analysis. PLoS One 2017; 12: e0187025.
Google Scholar | Crossref | Medline6. Hruska, KA, Malluche, HH, Martin, K, et al. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42(4 Suppl 3): S1–S201. Epub ahead of print 2003. DOI: 10.1053/S0272-6386(03)00905-3.
Google Scholar | Crossref | Medline7. Fu, RH, Wang, YC, Liu, SP, et al. Decellularization and recellularization technologies in tissue engineering. Cell Transpl 2014; 23: 621–630.
Google Scholar | SAGE Journals | ISI8. Totonelli, G, Maghsoudlou, P, Georgiades, F, et al. Detergent enzymatic treatment for the development of a natural acellular matrix for oesophageal regeneration. Pediatr Surg Int 2013; 29: 87–95.
Google Scholar | Crossref | Medline9. Macchiarini, P, Jungebluth, P, Go, T, et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008; 372: 2023–2030.
Google Scholar | Crossref | Medline | ISI10. Robertson, MJ, Dries-Devlin, JL, Kren, SM, et al. Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS One 2014; 9: e90406.
Google Scholar | Crossref | Medline | ISI11. Tondreau, MY, Laterreur, V, Gauvin, R, et al. Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater 2015; 18: 176–185.
Google Scholar | Crossref | Medline12. Syedain, Z, Reimer, J, Schmidt, J, et al. 6-Month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 2015; 73: 175–184.
Google Scholar | Crossref | Medline | ISI13. Hashimoto, Y, Funamoto, S, Sasaki, S, et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010; 31: 3941–3948.
Google Scholar | Crossref | Medline14. Song, JJ, Guyette, JP, Gilpin, SE, et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 2013; 19: 646–651.
Google Scholar | Crossref | Medline | ISI15. Mazza, G, Rombouts, K, Rennie Hall, A, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 2015; 5: 13079.
Google Scholar | Crossref | Medline16. Uygun, BE, Soto-Gutierrez, A, Yagi, H, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16: 814–820.
Google Scholar | Crossref | Medline | ISI17. Gilpin, SE, Guyette, JP, Gonzalez, G, et al. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Hear Lung Transpl 2014; 33: 298–308.
Google Scholar | Crossref | Medline | ISI18. Wang, B, Borazjani, A, Tahai, M, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 2010; 94(4): 1100–1110. DOI: 10.1002/jbm.a.32781.
Google Scholar | Crossref | Medline19. Gilpin, A, Yang, Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017; 2017: 9831534.
Google Scholar | Crossref | Medline20. Pan, J, Li, H, Fang, Y, et al. Regeneration of a bioengineered thyroid using decellularized thyroid matrix. Thyroid 2019; 29: 142–152.
Google Scholar | Crossref | Medline21. Jha, V, Arici, M, Collins, AJ, et al. Understanding kidney care needs and implementation strategies in low- and middle-income countries: conclusions from a “kidney disease: improving global outcomes” (KDIGO) controversies conference. Kidney Int 2016; 90(6): 1164–1174. DOI: 10.1016/j.kint.2016.09.009.
Google Scholar | Crossref | Medline22. Johnson, M . Detergents: triton X-100, Tween-20, and More. Mater Methods 2013; 3: 163–172.
Google Scholar | Crossref23. Koley, D, Bard, AJ. Triton X-100 concentration effects on membrane permeability of a single HeLa cell by scanning electrochemical microscopy (SECM). Proc Natl Acad Sci 2010; 107: 16783–16787.
Google Scholar | Crossref | Medline24. Xu, K, Kuntz, LA, Foehr, P, et al. Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS One 2017; 12: 1–16.
Google Scholar25. Simões, IN, Vale, P, Soker, S, et al. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep 2017; 7: 1–13.
Google Scholar | Crossref | Medline26. Mirzarafie, A, Grainger, RK, Thomas, B, et al. A fast and mild decellularization protocol for obtaining extracellular matrix. Rejuvenation Res 2014; 17: 159–160.
Google Scholar | Crossref | Medline27. Pang, K, Du, L, Wu, X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 2010; 31: 7257–7265.
Google Scholar | Crossref | Medline | ISI28. Petersen, TH, Calle, EA, Colehour, MB, et al. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 2012; 195: 222–231.
Google Scholar | Crossref | Medline29. Gilbert, TW, Freund, JM, Badylak, SF. Quantification of DNA in biologic scaffold materials. J Surg Res 2009; 152: 135–139.
Google Scholar | Crossref | Medline | ISI30. Gilbert, TW, Sellaro, TL, Badylak, SF. Decellularization of tissues and organs. Biomaterials 2006; 7: 3675–3683.
Google Scholar31. Chan, JKC . The wonderful colors of the hematoxylin–eosin stain in diagnostic surgical pathology. Int J Surg Pathol 2014; 22: 12–32.
Google Scholar | SAGE Journals | ISI32. Prasanth Babu, A, Reddy Dhyana, V, Rajasekhar, U, et al. Microanatomical studies on the parathyroid glands of horse. Int J Sci Environ Technol 2016; 5: 1238–1242.
Google Scholar33. Tandon, A, Singh, A, Shetty, D, et al. Tetrachromic VOF/Masson’s trichrome/H and E stains: unmasking their usability in differential stromal hard tissue staining. Indian J Pathol Microbiol 2019; 62(1): 67–72. DOI: 10.4103/ijpm.ijpm_242_18.
Google Scholar | Crossref | Medline34. Karim, H, Ali, HK. Anatomical and histological study of thymus gland in the local breed of Turkey “Meleagris gallopavo”. Iraqi J Vet Med 2017; 39: 40–48.
Google Scholar35. Woods, T, Gratzer, PF. Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 2005; 26: 7339–7349.
Google Scholar | Crossref | Medline | ISI36. Grauss, RW, Hazekamp, MG, Oppenhuizen, F, et al. Histological evaluation of decellularised porcine aortic valves: Matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 2005; 27(4):566–571. DOI: 10.1016/j.ejcts.2004.12.052.
Google Scholar | Crossref | Medline | ISI37. Deeken, CR, White, AK, Bachman, SL, et al. Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B Appl Biomater 2011; 96(2): 199–206. DOI: 10.1002/jbm.b.31753.
Google Scholar | Crossref | Medline38. Funamoto, S, Nam, K, Kimura, T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels. Biomaterials 2010; 31(13): 3590–3595. DOI: 10.1016/j.biomaterials.2010.01.073.
Google Scholar | Crossref | Medline | ISI39. Xu, H, Xu, B, Yang, Q, et al. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS One 2014; 9: e86723.
Google Scholar | Crossref | Medline40. Nerurkar, NL, Elliott, DM, Mauck, RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 2007; 25: 1018–1028.
Google Scholar | Crossref | Medline | ISI41. McKelvey, RD, Roberts, RM, Gilbert, JC, et al. Experimental organic chemistry: a miniscale approach. J Chem Educ 1995; 72: A37.
Google Scholar | Crossref42. Faulk, DM, Johnson, SA, Badylak, SF. Decellularized biological scaffolds for cardiac repair and regeneration. In: Li R-K and Weisel RD (eds) Cardiac Regeneration and Repair. Amsterdam, Netherlands: Elsevier, pp. 180–200.
Google Scholar | Crossref43. Nakayama, KH, Batchelder, CA, Lee, CI, et al. Decellularized Rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010; 16(7): 2207–2216. DOI: 10.1089/ten.tea.2009.0602.
Google Scholar | Crossref | Medline | ISI44. Ott, HC, Matthiesen, TS, Goh, SK, et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2):213–221. DOI: 10.1038/nm1684.
Google Scholar | Crossref | Medline | ISI45. Chauviere, MV, Schutter, RJ, Steigelman, MB, et al. Comparison of AlloDerm and AlloMax Tissue Incorporation in Rats. Ann Plast Surg 2014; 73: 282–285.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif