Proteomic Analysis of Subchronic Furan Exposure in the Liver of Male Fischer F344 Rats

1. Carfagna, MA, Held, SD, Kedderis, GL. Furan-induced cytolethality in isolated rat hepatocytes: correspondence with in vivo dosimetry. Toxicol Appl Pharmacol. 1993;123(2):265–273.
Google Scholar | Crossref | Medline2. Gill, S, Bondy, G, Lefebvre, DE, et al. Subchronic oral toxicity study of furan in Fischer-344 rats. Toxicol Pathol. 2010;38(4):619–630.
Google Scholar | SAGE Journals | ISI3. Seok, YJ, Her, JY, Kim, YG, et al. Furan in thermally processed foods—a review. Toxicol Res. 2015;31(3):241–253.
Google Scholar | Crossref | Medline4. Tǎbǎran, AF, O’Sullivan, MG, Seabloom, DE, et al. Inhaled furan selectively damages club cells in lungs of A/J mice. Toxicol Pathol. 2019;47(7):842–850.
Google Scholar | SAGE Journals | ISI5. Grill, AE, Schmitt, T, Gates, LA, et al. Abundant rodent furan-derived urinary metabolites are associated with tobacco smoke exposure in humans. Chem Res Toxicol. 2015;8(7):1508–1516.
Google Scholar | Crossref6. Maga, JA . Furans in foods. CRC Crit Rev Food Sci Nutr. 1979;11(4):355–400.
Google Scholar | Crossref | Medline7. Cha, CY, Lee, KG. Effect of roasting conditions on the formation and kinetics of furan in various nuts. Food Chem. 2020;331:127338.
Google Scholar | Crossref | Medline8. Bolger, PM, Tao, SS, Dinovi, M. Hazards of dietary furan. In: Stadler, RH, Lineback, DR, eds. Process-Induced Toxicants: Occurrence Formation, Mitigation and Health Risks. 2nd ed. John Wiley; 2008:111–132.
Google Scholar | Crossref9. Crews, C, Castle, L. A review of the occurrence, formation and analysis of furan in heat processed foods. Trends Food Sci Tech. 2007;18(7):365–372.
Google Scholar | Crossref10. Morehouse, KM, Nyman, PJ, McNeal, TP, Dinovi, MJ, Perfetti, GA. Survey of furan in heat processed foods by headspace gas chromatography/mass spectrometry and estimated adult exposure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(3):259–264.
Google Scholar | Crossref | Medline11. Bakhiya, N, Appel, KE. Toxicity and carcinogenicity of furan in human diet. Arch Toxicol. 2010;84(7):563–578.
Google Scholar | Crossref | Medline12. Buszewski, B, Ulanowska, A, Ligor, T, Denderz, N, Amann, A. Analysis of exhaled breath from smokers, passive smokers and non-smokers by solid-phase microextraction gas chromatography/mass spectrometry. Biomed Chromatogr. 2009;23(5):551–556.
Google Scholar | Crossref | Medline13. Batool, Z, Xu, D, Zhang, X, et al. A review on furan: formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit Rev Food Sci Nutr. 2021;61(3):395–406.
Google Scholar | Crossref | Medline14. Arisseto, AP. Furan in processed foods. In: Kotzekidou, P , ed. Food Hygiene and Toxicology in Ready-to-Eat Foods. Academic Press, Elsevier; 2016:383–396. Chapter 21. Copyright © 2016 Elsevier Inc.
Google Scholar | Crossref15. Becalski, A, Seaman, S. Furan precursors in food: a model study and development of a simple headspace method for determination of furan. J AOAC Int. 2005;88(1):102–106.
Google Scholar | Crossref | Medline | ISI16. National Toxicology Program . Toxicology and Carcinogenesis Studies of Furan (CAS No. 110-00-9) in F344/N Rats and B6C3F1 Mice (Gavage Studies). NTP TR 402. US Department of Health and Human Services, National Toxicology Program, Research Triangle Park, NC. 1993.
Google Scholar17. International Agency for Research on Cancer (IARC) . Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC Monogr Eval Carcinog Risks Hum. 1995;63:393–407.
Google Scholar | Medline18. Chen, LJ, Hecht, SS, Peterson, LA. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem Res Toxicol. 1997;10(8):866–874.
Google Scholar | Crossref | Medline19. Peterson, LA, Cummings, ME, Vu, CC, Matter, BA. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial. Drug Metab Dispos. 2005;33(10):1453–1458.
Google Scholar | Crossref | Medline20. Peterson, LA, Naruko, KC, Predecki, DP. A reactive metabolite of furan, cis-2-butene-1,4-dial, is mutagenic in the Ames assay. Chem Res Toxicol. 2000;13(7):531–534.
Google Scholar | Crossref | Medline21. Dong, H, Gill, S, Curran, IH, et al. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol. 2015;90(6):1351–1367.
Google Scholar | Crossref | Medline22. Liang, X, Martyniuk, CJ, Simmons, DBD. Are we forgetting the “proteomics” in multi-omics ecotoxicology? Comp Biochem Physiol. Part D Genomics Proteomics. 2020;36:100751.
Google Scholar | Crossref | Medline23. Brancini, GTP, Ferreira, MES, Rangel, DEN, Braga, GÚL. Combining transcriptomics and proteomics reveals potential post-transcriptional control of gene expression after light exposure in Metarhizium acridum. G3 (Bethesda). 2019;9(9):2951–2961.
Google Scholar | Crossref | Medline24. Jagannathan, S, Ogata, Y, Gafken, PR, Tapscott, SJ, Bradley, RK. Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy. Elife. 2019;8:e41740.
Google Scholar | Crossref | Medline25. Schwanhäusser, B, Busse, D, Li, N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342. doi:10.1038/nature10098. Erratum in: Nature. 2013;495(7439):126–127.
Google Scholar | Crossref | Medline | ISI26. Vélez-Bermúdez, IC, Schmidt, W. The conundrum of discordant protein and mRNA expression. Are plants special? Front Plant Sci. 2014;5:619.
Google Scholar | Medline27. Canzler, S, Schor, J, Busch, W, et al. Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol. 2020;94(2):371–388.
Google Scholar | Crossref | Medline28. Gill, S, Kavanagh, M, Poirier, C, Weber, D, Koerner, T. Serum proteomic analysis for the identification of biomarkers by two-dimensional differential gel electrophoresis (2D-DIGE) after exposure to the food-processed contaminant Furan. J Clin Toxicol. 2016;6(301):3.
Google Scholar29. Shevchenko, A, Tomas, H, Havli, J, Olsen, JV, Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–2860.
Google Scholar | Crossref | Medline30. Mally, A, Graff, C, Schmal, O, et al. Functional and proliferative effects of repeated low-dose oral administration of furan in rat liver. Mol Nutr Food Res. 2010;54(11):1556–1567.
Google Scholar | Crossref | Medline31. Dennis, G, Sherman, BT, Hosack, DA, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):3.
Google Scholar | Crossref32. da Huang, W, Sherman, BT, Lempicki, RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Google Scholar | Crossref | Medline33. Cakir, OO, Toker, A, Ataseven, H, Demir, A, Polat, H. The importance of liver-fatty acid binding protein in diagnosis of liver damage in patients with acute hepatitis. J Clin Diagn Res. 2017;11(4):OC17-OC21. doi:10.7860/JCDR/2017/24958.9621
Google Scholar | Medline34. Moro, S, Chipman, JK, Antczak, P, et al. Identification and pathway mapping of furan target proteins reveal mitochondrial energy production and redox regulation as critical targets of furan toxicity. Toxicol Sci. 2012;126(2):336–352.
Google Scholar | Crossref | Medline35. Furuhashi, M, Hotamisligil, GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 2008;7(6):489–503.
Google Scholar | Crossref | Medline | ISI36. Yamaguchi, M . Involvement of regucalcin in human carcinogenesis prevention. Cancer Stud. 2017;1(1):2.
Google Scholar | Crossref37. Lu, D, Peterson, LA. Identification of furan metabolites derived from cysteine-cis-2-butene-1,4-dial-lysine cross-links. Chem Res Toxicol. 2010;23(1):142–151.
Google Scholar | Crossref | Medline38. Ramm, S, Limbeck, E, Mally, A. Functional and cellular consequences of covalent target protein modification by furan in rat liver. Toxicology. 2016;361-362:49–61.
Google Scholar | Crossref | Medline39. Malleske, D, Rogers, LK, Velluci, SM, et al. Hyperoxia increases hepatic arginase expression and ornithine production in mice. Toxicol Appl Pharmacol. 2006;215(1):109–117.
Google Scholar | Crossref | Medline40. Mugford, CA, Carfagna, MA, Kedderis, GL. Furan-mediated uncoupling of hepatic oxidative phosphorylation in Fischer-344 rats: an early event in cell death. Toxicol Appl Pharmacol. 1997;144(1):1–11.
Google Scholar | Crossref | Medline41. Burka, LT, Washburn, KD, Irwin, RD. Disposition of [14C] furan in the male F344 rat. J Toxicol Environ Health. 1991;34(2):245-245.
Google Scholar | Crossref | Medline42. Lu, D, Sullivan, MM, Phillips, MB, Peterson, LA. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan. Chem Res Toxicol. 2009;22(6):997–1007.
Google Scholar | Crossref | Medline43. Weng, YR, Cui, Y, Fang, JY. Biological functions of cytokeratin 18 in cancer. Mol Cancer Res. 2012;10(4);485–493.
Google Scholar | Crossref | Medline44. Oshima, RG, Baribault, H, Caulín, C. Oncogenic regulation and function of keratins 8 and 18. Cancer Metastasis Rev. 1996;15(4):445–471.
Google Scholar | Crossref | Medline45. Wagner, WF, Nebreda, AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev. 2009;9(8):537–549.
Google Scholar | Crossref46. Sun, Y, Liu, WZ, Liu, T, Feng, X, Yang, N, Zhou, HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600-604.
Google Scholar | Crossref | Medline47. Huang, H, McIntosh, AL, Landrock, KK, et al. Human FABP1 T94A variant enhances cholesterol uptake. Biochim Biophys Acta. 2015;1851(7):946–955.
Google Scholar | Crossref | Medline48. Feige, JN, Gelman, L, Michalik, L, Desvergne, B, Wahli, W From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research. 2006;45(2):120–159.
Google Scholar | Crossref | Medline49. Moreira, AC, Mesquita, G, Gomes, MS. Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions. Microorganisms. 2020;8(4):589.
Google Scholar | Crossref

留言 (0)

沒有登入
gif