High-resolution relaxometry-based calibrated fMRI in murine brain: Metabolic differences between awake and anesthetized states

1. Soares, JM, Magalhaes, R, Moreira, PS, et al. A hitchhiker's guide to functional magnetic resonance imaging. Front Neurosci 2016; 10: 515.
Google Scholar | Crossref | Medline2. Thompson, GJ. Neural and metabolic basis of dynamic resting state fMRI. NeuroImage 2018; 180: 448–462.
Google Scholar | Crossref | Medline3. Ogawa, S, Menon, RS, Tank, DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993; 64: 803–812.
Google Scholar | Crossref | Medline | ISI4. Hyder, F, Kida, I, Behar, KL, et al. Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 2001; 14: 413–431.
Google Scholar | Crossref | Medline | ISI5. Mandino, F, Cerri, DH, Garin, CM, et al. Animal functional magnetic resonance imaging: trends and path toward standardization. Front Neuroinform 2019; 13: 78.
Google Scholar | Crossref | Medline6. Sanganahalli, BG, Herman, P, Rothman, DL, et al. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 2016; 36: 1695–1707.
Google Scholar | SAGE Journals | ISI7. Herman, P, Sanganahalli, BG, Blumenfeld, H, et al. Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proc Natl Acad Sci USA 2013; 110: 15115–15120.
Google Scholar | Crossref | Medline | ISI8. Maandag, NJ, Coman, D, Sanganahalli, BG, et al. Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci USA 2007; 104: 20546–20551.
Google Scholar | Crossref | Medline | ISI9. Sanganahalli, BG, Herman, P, Blumenfeld, H, et al. Oxidative neuroenergetics in event-related paradigms. J Neurosci 2009; 29: 1707–1718.
Google Scholar | Crossref | Medline | ISI10. Davis, TL, Kwong, KK, Weisskoff, RM, et al. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998; 95: 1834–1839.
Google Scholar | Crossref | Medline | ISI11. Hoge, RD, Atkinson, J, Gill, B, et al. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999; 42: 849–863.
Google Scholar | Crossref | Medline | ISI12. Chiarelli, PA, Bulte, DP, Wise, R, et al. Calibration method for quantitative BOLD fMRI based on hyperoxia. NeuroImage 2007; 37: 808–820.
Google Scholar | Crossref | Medline | ISI13. Hoge, RD. Calibrated FMRI. NeuroImage 2012; 62: 930–937.
Google Scholar | Crossref | Medline | ISI14. Kida, I, Kennan, RP, Rothman, DL, et al. High-resolution CMR(O2) mapping in rat cortex: a multiparametric approach to calibration of BOLD image contrast at 7 tesla. J Cereb Blood Flow Metab 2000; 20: 847–860.
Google Scholar | SAGE Journals | ISI15. Shu, CY, Herman, P, Coman, D, et al. Brain region and activity-dependent properties of M for calibrated fMRI. NeuroImage 2016; 125: 848–856.
Google Scholar | Crossref | Medline | ISI16. Berman, AJL, Mazerolle, EL, MacDonald, ME, et al. Gas-free calibrated fMRI with a correction for vessel-size sensitivity. NeuroImage 2018; 169: 176–188.
Google Scholar | Crossref | Medline17. Liu, EY, Guo, J, Simon, AB, et al. The potential for gas-free measurements of absolute oxygen metabolism during both baseline and activation states in the human brain. NeuroImage 2020; 207: 116342.
Google Scholar | Crossref | Medline18. Blockley, NP, Griffeth, VE, Buxton, RB. A general analysis of calibrated BOLD methodology for measuring CMRO2 responses: comparison of a new approach with existing methods. NeuroImage 2012; 60: 279–289.
Google Scholar | Crossref | Medline | ISI19. Rodgers, ZB, Detre, JA, Wehrli, FW. MRI-based methods for quantification of the cerebral metabolic rate of oxygen. J Cereb Blood Flow Metab 2016; 36: 1165–1185.
Google Scholar | SAGE Journals | ISI20. Slupe, AM, Kirsch, JR. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab 2018; 38: 2192–2208.
Google Scholar | SAGE Journals | ISI21. Drummond, JC, Dao, AV, Roth, DM, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 2008; 108: 225–232.
Google Scholar | Crossref | Medline22. Prielipp, RC, Wall, MH, Tobin, JR, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg 2002; 95: 1052–1059. table of contents.
Google Scholar | Crossref | Medline | ISI23. Grandjean, J, Schroeter, A, Batata, I, et al. Optimization of anesthesia protocol for resting-state fMRI in mice based on differential effects of anesthetics on functional connectivity patterns. NeuroImage 2014; 102 Pt 2: 838–847.
Google Scholar | Crossref | Medline24. Han, Z, Chen, W, Chen, X, et al. Awake and behaving mouse fMRI during go/no-go task. NeuroImage 2019; 188: 733–742.
Google Scholar | Crossref | Medline25. Sicard, KM, Duong, TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage 2005; 25: 850–858.
Google Scholar | Crossref | Medline | ISI26. Shu, CY, Sanganahalli, BG, Coman, D, et al. Quantitative beta mapping for calibrated fMRI. NeuroImage 2016; 126: 219–228.
Google Scholar | Crossref | Medline27. Lu, H, Xu, F, Grgac, K, et al. Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2012; 67: 42–49.
Google Scholar | Crossref | Medline | ISI28. Wei, Z, Xu, J, Liu, P, et al. Quantitative assessment of cerebral venous blood T2 in mouse at 11.7T: implementation, optimization, and age effect. Magn Reson Med 2018; 80: 521–528.
Google Scholar | Crossref | Medline29. Shu, CY, Sanganahalli, BG, Coman, D, et al. New horizons in neurometabolic and neurovascular coupling from calibrated fMRI. Prog Brain Res 2016; 225: 99–122.
Google Scholar | Crossref | Medline | ISI30. Boxerman, JL, Bandettini, PA, Kwong, KK, et al. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 1995; 34: 4–10.
Google Scholar | Crossref | Medline | ISI31. Silvennoinen, MJ, Clingman, CS, Golay, X, et al. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 tesla. Magn Reson Med 2003; 49: 47–60.
Google Scholar | Crossref | Medline | ISI32. Grubb, RL, Raichle, ME, Eichling, JO, et al. Ter-Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630–639.
Google Scholar | Crossref | Medline | ISI33. Laboratory animal – Guideline for ethical review of animal welfare. GB/T 35892-2018 China: National Standards of the People's Republic of China, 2018.
Google Scholar34. Laboratory animal – Guideline for ethical review of animal welfare , http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=9BA619057D5C13103622A10FF4BA5D14. (accessed 11 November 2021).
Google Scholar35. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar | SAGE Journals | ISI36. Chen, X, Tong, C, Han, Z, et al. Sensory evoked fMRI paradigms in awake mice. NeuroImage 2020; 204: 116242.
Google Scholar | Crossref | Medline37. Kobayashi, M, Mori, T, Kiyono, Y, et al. Cerebral oxygen metabolism of rats using injectable (15)O-oxygen with a steady-state method. J Cereb Blood Flow Metab 2012; 32: 33–40.
Google Scholar | SAGE Journals | ISI38. Watabe, T, Shimosegawa, E, Watabe, H, et al. Quantitative evaluation of cerebral blood flow and oxygen metabolism in normal anesthetized rats: 15O-labeled gas inhalation PET with MRI fusion. J Nucl Med 2013; 54: 283–290.
Google Scholar | Crossref | Medline | ISI39. Fukuda, M, Vazquez, AL, Zong, X, et al. Effects of the α2-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci 2013; 37: 80–95.
Google Scholar | Crossref | Medline | ISI40. Hirschler, L, Munting, LP, Khmelinskii, A, et al. Transit time mapping in the mouse brain using time-encoded pCASL. NMR Biomed 2018; 31: e3855.
Google Scholar | Crossref41. Wang, Z, Aguirre, GK, Rao, H, et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Reson Imaging 2008; 26: 261–269.
Google Scholar | Crossref | Medline | ISI42. Hyder, F, Herman, P, Bailey, CJ, et al. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 2016; 36: 903–916.
Google Scholar | SAGE Journals | ISI43. Carvajal-Rodriguez, A, de Una-Alvarez, J. Assessing significance in high-throughput experiments by sequential goodness of fit and q-value estimation. PloS One 2011; 6: e24700.
Google Scholar | Crossref | Medline | ISI44. Xiong, B, Li, A, Lou, Y, et al. Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front Neuroanat 2017; 11: 128.
Google Scholar | Crossref | Medline45. Dorr, A, Sled, JG, Kabani, N. Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. NeuroImage 2007; 35: 1409–1423.
Google Scholar | Crossref | Medline | ISI46. Kida, I, Rothman, DL, Hyder, F. Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 2007; 27: 690–696.
Google Scholar | SAGE Journals | ISI47. Chen, JJ, Pike, GB. MRI measurement of the BOLD-specific flow-volume relationship during hypercapnia and hypocapnia in humans. NeuroImage 2010; 53: 383–391.
Google Scholar | Crossref | Medline | ISI48. Lee, SP, Duong, TQ, Yang, G, et 

留言 (0)

沒有登入
gif