Trim28 acts as restriction factor of prototype foamy virus replication by modulating H3K9me3 marks and destabilizing the viral transactivator Tas

1.

Rethwilm A, Lindemann D. Foamy viruses. In: Knipe DM, Howley P, editors. Fields Virology 2013.

2.

Bodem J. Regulation of foamy viral transcription and RNA export. Adv Virus Res. 2011;81:1.

CAS  PubMed  Google Scholar 

3.

Axel R. Molecular biology of foamy viruses. Med Microbiol Immunol. 2010;199(3):197–207.

Google Scholar 

4.

Lochelt M, Muranyi W, Flugel RM. Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci USA. 1993;90(15):7317–21.

CAS  PubMed  PubMed Central  Google Scholar 

5.

Bodem J, Lochelt M, Delius H, et al. Detection of subgenomic cDNAs and mapping of feline foamy virus mRNAs reveals complex patterns of transcription. Virology. 1998;244(2):417–26.

CAS  PubMed  Google Scholar 

6.

Bodem J, Kang Y, Flugel RM. Comparative functional characterization of the feline foamy virus transactivator reveals its species specificity. Virology. 2004;318:32–6.

CAS  PubMed  Google Scholar 

7.

He FL, Blair WS, Fukushima J, et al. The human foamy virus Bel-1 transcription factor is a sequence-specific DNA binding protein. J Virol. 1996;70(6):3902–8.

CAS  PubMed  PubMed Central  Google Scholar 

8.

Kang Y, Blair WS, Cullen BR. Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter. J Virol. 1998;72(1):504–11.

CAS  PubMed  PubMed Central  Google Scholar 

9.

Meiering CD, Linial ML. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA. 2002;99(23):15130–5.

CAS  PubMed  PubMed Central  Google Scholar 

10.

Yuan P, Dong L, Cheng Q, et al. Prototype foamy virus elicits complete autophagy involving the ER stress-related UPR pathway. Retrovirology. 2017;14(1):16.

PubMed  PubMed Central  Google Scholar 

11.

Dong L, Cheng Q, Wang Z, et al. Human Pirh2 is a novel inhibitor of prototype foamy virus replication. Viruses. 2015;7(4):1668–84.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Yin J, Zheng Y, Yuan P, et al. Novel host protein TBC1D16, a GTPase activating protein of Rab 5c, inhibits prototype foamy virus replication. Front Immunol. 2021;12:658660.

PubMed  PubMed Central  Google Scholar 

13.

Friedman JR, Fredericks WJ, Jensen DE, et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10(16):2067–78.

CAS  PubMed  Google Scholar 

14.

Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42(4):297.

CAS  PubMed  Google Scholar 

15.

Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem. 2011;286(30):26267.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Miles DC, de Vries NA, Gisler S, et al. TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells. 2017;35:147–57.

CAS  PubMed  Google Scholar 

17.

Peter M, Oleg G, Le DB, et al. Transcriptional repression by RING finger protein TIF1β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 1996;24(24):4859.

Google Scholar 

18.

Schultz DC. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16(8):919–32.

CAS  PubMed  PubMed Central  Google Scholar 

19.

Sripathy SP, Stevens J, Schultz DC. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol. 2006;26(22):8623–38.

CAS  PubMed  PubMed Central  Google Scholar 

20.

Groner AC, Meylan S, Ciuffi A, et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. Plos Genet. 2010;6(3):e1000869.

PubMed  PubMed Central  Google Scholar 

21.

Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007;131:46–57.

CAS  PubMed  Google Scholar 

22.

Wolf D, Hug K, Goff SP. TRIM28 mediates primer binding site-targeted silencing of Lys 1,2 tRNA-utilizing retroviruses in embryonic cells. Proc Natl Acad Sci USA. 2008;105:12521–6.

CAS  PubMed  PubMed Central  Google Scholar 

23.

Rowe HM, Jakobsson J, Mesnard D, et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010;463:237–40.

CAS  PubMed  Google Scholar 

24.

Fasching L, Kapopoulou A, Sachdeva R, et al. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Rep. 2015;10:20–8.

CAS  PubMed  Google Scholar 

25.

Allouch A, Di Primio C, Alpi E, et al. The TRIM family protein KAP1 inhibits HIV-1 integration. Cell Host Microbe. 2011;9:484–95.

CAS  PubMed  Google Scholar 

26.

Nishitsuji H, Abe M, Sawada R, Takaku H. ZBRK1 represses HIV-1 LTR-mediated transcription. FEBS Lett. 2012;586:3562–8.

CAS  PubMed  Google Scholar 

27.

Nishitsuji H, Sawada L, Sugiyama R, Takaku H. ZNF10 inhibits HIV-1 LTR activity through interaction with NF-kappaB and Sp1 binding motifs. FEBS Lett. 2015;589:2019–25.

CAS  PubMed  Google Scholar 

28.

Barde I, Laurenti E, Verp S, et al. Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol. 2009;83:5574–80.

CAS  PubMed  PubMed Central  Google Scholar 

29.

Tai HY, Sun KH, Kung SH, et al. A quantitative assay for measuring human foamy virus using an established indicator cell line. J Virol Methods. 2001;94(1–2):155–62.

CAS  PubMed  Google Scholar 

30.

Zurnic I, Hütter S, Rzeha U, et al. Interactions of prototype foamy virus capsids with host cell polo-like kinases are important for efficient viral DNA integration. Plos Pathogens. 2016;12(8):e1005860.

PubMed  PubMed Central  Google Scholar 

31.

Maurer B, Bannert H, Darai G, et al. Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus. J Virol. 1988;62(5):1590.

CAS  PubMed  PubMed Central  Google Scholar 

32.

Das PM, Ramachandran K, Vanwert J, et al. Chromatin immunoprecipitation assay. Biotechniques. 2004;37:961–9.

CAS  PubMed  Google Scholar 

33.

Meiering CD, Rubio C, May C, et al. Cell-type-specific regulation of the two foamy virus promoters. J Virol. 2001;75(14):6547–57.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Meiering CD, Linial ML. Reactivation of a complex retrovirus is controlled by a molecular switch and is inhibited by a viral protein. Proc Natl Acad Sci USA. 2002;99(23):15130–5.

CAS  PubMed  PubMed Central  Google Scholar 

35.

Lchelt M, et al. The human foamy virus internal promoter is required for efficient gene expression and infectivity. Virology. 1995;206(1):601–10.

Google Scholar 

36.

Jin JO, Lee GD, Sang HN, et al. Sequential ubiquitination of p53 by TRIM28, RLIM, and MDM2 in lung tumorigenesis. Cell Death Differ. 2020;28(6):1790–803.

PubMed  Google Scholar 

37.

Shu HN, Itahana Y, Alagu J, et al. TRIM28 is an E3 ligase for ARF-mediated NPM1/B23 SUMOylation that represses centrosome amplification. Mol Cell Biol. 2015;35(16):2851.

Google Scholar 

38.

Pineda CT, Potts PR. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy. 2015;11:844–6.

CAS  PubMed  PubMed Central  Google Scholar 

39.

Yang B, O’Herrin SM, Wu J, et al. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Can Res. 2007;67(20):9954–62.

CAS  Google Scholar 

40.

Wolf D, Goff SP. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 2009;458:1201–4.

CAS  PubMed  PubMed Central  Google Scholar 

41.

Simona K, Alona K, Ran T. Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathogens. 2020;16(9):e1008834.

Google Scholar 

42.

Regad T, Saib A, Lallemand-Breitenbach V, et al. PML mediates the interferon-induced antiviral state against a complex retrovirus via its association with the viral transactivator. EMBO J. 2014;20(13):3495–505.

Google Scholar 

43.

Hu X, Yang W, Liu R, et al. N-Myc interactor inhibits prototype foamy virus by sequestering viral Tas protein in the cytoplasm. J Virol. 2014;88:7036–44.

PubMed  PubMed Central  Google Scholar 

44.

Kane M, Mele V, Liberatore RA, et al. Inhibition of Spumavirus gene expression by PHF11. PloS Pathogens. 2020;16(7):e1008644.

CAS  PubMed  PubMed Central  Google Scholar 

45.

Peng H, Begg GE, Schultz DC, et al. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. J Mol Biol. 2000;295(5):1139–62.

CAS  PubMed  Google Scholar 

46.

Peng H, Begg GE, Harper SL, et al. Biochemical analysis of the Kruppel-associated box (KRAB) transcriptional repression domain. J Biol Chem. 2000;275:18000–10.

CAS  PubMed 

留言 (0)

沒有登入
gif