Comprehensive analyses of microRNA and mRNA expression in colorectal serrated lesions and colorectal cancer with a microsatellite instability phenotype

MicroRNA (miRNA) expression is dysregulated in human tumors, thereby contributing to tumorigenesis through altered expression of mRNA. Thus, identification of the relationships between miRNAs and mRNAs is important for evaluating the molecular mechanisms of tumors. In addition, elucidation of the molecular features of serrated lesions is essential in colorectal tumorigenesis. Here, we examined the relationships of miRNA and mRNA expressed in serrated lesions, including 26 sessile serrated lesions (SSLs), 12 traditional serrated adenomas (TSAs), and 11 colorectal cancers (CRCs) with a microsatellite instability (MSI) phenotype using crypt isolation. We divided the samples into the first and second cohorts for validation. Array-based expression analyses were used to evaluate miRNAs and mRNAs with opposite expression patterns in isolated tumor glands. In addition, we validated the relationships of miRNA/mRNA pairs in the second cohort using real-time polymerase chain reaction. We found that the expression of miRNA-5787 was correlated with reciprocal expression of two mRNAs, that is, SRRM2 and POLR2J3, in SSL samples. In TSA samples, two pairs of miRNAs/mRNAs showing opposite expression patterns, that is, miRNA-182-5p/ETF1 and miRNA-200b-3p/MYB, were identified. Ultimately, three pairs of miRNAs/mRNAs with opposite expression patterns, including miRNA-222-3p/SLC26A3, miRNA-6753-3p/FABP1, and miRNA-222-3p/OLFM4, were retained in CRC with an MSI phenotype. Finally, we performed transfection with an miR-222-3p mimic to confirm the expression of SLC26A3 and OLFM4; the results showed that ectopic expression of miR-222-3p moderately suppressed OLFM4 and downregulated SLC26A3 to some extent. Overall, our results provided basic insights into the evaluation of colorectal tumorigenesis of serrated lesions and CRC with an MSI phenotype.

留言 (0)

沒有登入
gif