Electroacupuncture improves metabolic and ovarian function in a rat model of polycystic ovary syndrome by decreasing white adipose tissue, increasing brown adipose tissue, and modulating the gut microbiota

1. Goodarzi, MO, Dumesic, DA, Chazenbalk, G, et al. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 2011; 7(4): 219–231.
Google Scholar | Crossref | Medline2. Azziz, R, Marin, C, Hoq, L, et al. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab 2005; 90(8): 4650–4658.
Google Scholar | Crossref | Medline3. Hoeger, KM, Oberfield, SE. Do women with PCOS have a unique predisposition to obesity? Fertil Steril 2012; 97(1): 13–17.
Google Scholar | Crossref | Medline4. Diamanti-Kandarakis, E, Papavassiliou, AG, Kandarakis, SA, et al. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab 2007; 18(7): 280–285.
Google Scholar | Crossref | Medline5. Ravussin, E, Galgani, JE. The implication of brown adipose tissue for humans. Annu Rev Nutr 2011; 31: 33–47.
Google Scholar | Crossref | Medline6. Kahn, CR, Wang, G, Lee, KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2019; 129: 3990–4000.
Google Scholar | Crossref | Medline7. Yuan, X, Hu, T, Zhao, H, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci U S A 2016; 113: 2708–2713.
Google Scholar | Crossref | Medline8. Doretto-Silva, L, Steiner, ML, Veridiano, JM, et al. White, brown, and bone marrow adipose tissue behavior in DHEA-induced PCOS mice. Gynecol Endocrinol 2021; 37: 15–20.
Google Scholar | Crossref | Medline9. Sayin, SI, Wahlstrom, A, Felin, J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225–235.
Google Scholar | Crossref | Medline10. Jones, ML, Tomaro-Duchesneau, C, Prakash, S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 2014; 22(6): 306–308.
Google Scholar | Crossref | Medline11. Wei, M, Huang, F, Zhao, L, et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 2020; 55: 102766.
Google Scholar | Crossref | Medline12. Broeders, EP, Nascimento, EB, Havekes, B, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab 2015; 22: 418–426.
Google Scholar | Crossref | Medline13. Torres, PJ, Siakowska, M, Banaszewska, B, et al. Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab 2018; 103: 1502–1511.
Google Scholar | Crossref | Medline14. Sherman, S, Sarsour, N, Salehi, M, et al. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 2018; 9(5): 400–421.
Google Scholar | Medline15. Qi, X, Yun, C, Sun, L, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 2019; 25(8): 1225–1233. Erratum in: Nat Med 2019; 25(9): 1459.
Google Scholar | Crossref | Medline16. Martinez, B, Peplow, PV. Treatment of insulin resistance by acupuncture: a review of human and animal studies. Acupunct Med 2016; 34(4): 310–319.
Google Scholar | SAGE Journals17. Smith, CA, Armour, M, Ee, C. Complementary therapies and medicines and reproductive medicine. Semin Reprod Med 2016; 34(2): 67–73.
Google Scholar | Crossref | Medline18. Si, YC, Miao, WN, He, JY, et al. Regulating gut flora dysbiosis in obese mice by electroacupuncture. Am J Chin Med. Epub ahead of print 4 October 2018. DOI: 10.1142/S0192415X18500763.
Google Scholar | Crossref19. Wang, H, Wang, Q, Liang, C, et al. Acupuncture regulating gut microbiota in abdominal obese rats induced by high-fat diet. Evid Based Complement Alternat Med 2019; 2019: 4958294.
Google Scholar | Crossref | Medline20. Zhang, F, Ma, T, Cui, P, et al. Diversity of the gut microbiota in dihydrotestosterone-induced PCOS rats and the pharmacologic effects of diane-35, probiotics, and berberine. Front Microbiol 2019; 10: 175.
Google Scholar | Crossref | Medline21. Marcondes, FK, Bianchi, FJ, Tanno, AP. Determination of the estrous cycle phases of rats: some helpful considerations. Braz J Biol 2002; 62(4A): 609–614.
Google Scholar | Crossref | Medline22. Qian, S, Huang, H, Tang, Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med 2015; 9(2): 162–172.
Google Scholar | Crossref | Medline23. Sakellariou, P, Valente, A, Carrillo, AE, et al. Chronic l-menthol-induced browning of white adipose tissue hypothesis: a putative therapeutic regime for combating obesity and improving metabolic health. Med Hypotheses 2016; 93: 21–26.
Google Scholar | Crossref | Medline24. Bartelt, A, Heeren, J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014; 10: 24–36.
Google Scholar | Crossref | Medline25. Mestdagh, R, Dumas, ME, Rezzi, S, et al. Gut microbiota modulate the metabolism of brown adipose tissue in mice. J Proteome Res 2012; 11: 620–630.
Google Scholar | Crossref | Medline26. Suárez-Zamorano, N, Fabbiano, S, Chevalier, C, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med 2015; 21(12): 1497–1501.
Google Scholar | Crossref | Medline27. Shen, W, Wang, Y, Lu, SF, et al. Acupuncture promotes white adipose tissue browning by inducing UCP1 expression on DIO mice. BMC Complement Altern Med 2014; 14: 501.
Google Scholar | Crossref | Medline28. Zhou, HJ, Wang, H, Shu, Q, et al. Effect of “biao-ben points association” electroacupuncture combined with dietary restriction on SIRT1 and UCP1 expression in brown adipose tissue of obese rats. World Chinese Journal of Digestology 2016; 24(22): 3410–3416.
Google Scholar29. Lindheim, L, Bashir, M, Münzker, J, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS ONE 2017; 12(1): e0168390.
Google Scholar | Crossref | Medline30. Bliss, ES, Whiteside, E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol 2018; 9: 900.
Google Scholar | Crossref | Medline31. El Aidy, S, Dinan, TG, Cryan, JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther 2015; 37: 954–967.
Google Scholar | Crossref | Medline32. Tian, DR, Li, XD, Wang, F, et al. Up-regulation of the expression of cocaine and amphetamine-regulated transcript peptide by electroacupuncture in the arcuate nucleus of diet-induced obese rats. Neurosci Lett 2005; 383: 17–21.
Google Scholar | Crossref | Medline33. Li, H, He, T, Xu, Q, et al. Acupuncture and regulation of gastrointestinal function. World J Gastroenterol 2015; 21: 8304–8313.
Google Scholar | Crossref | Medline34. Wahlstrom, A, Sayin, SI, Marschall, HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016; 24: 41–50.
Google Scholar | Crossref | Medline35. Worthmann, A, John, C, Rühlemann, MC, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 2017; 23(7): 839–849.
Google Scholar | Crossref | Medline36. Scher, JU, Sczesnak, A, Longman, RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013; 2: e01202.
Google Scholar | Crossref | Medline37. Wu, GD, Chen, J, Hoffmann, C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334: 105–108.
Google Scholar | Crossref | Medline38. De Filippo, C, Cavalieri, D, Di Paola, M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107: 14691–14696.
Google Scholar | Crossref | Medline39. Yatsunenko, T, Rey, FE, Manary, MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222–227.
Google Scholar | Crossref | Medline40. Dillon, SM, Lee, EJ, Kotter, CV, et al. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection. Mucosal Immunol 2016; 9(1): 24–37.
Google Scholar | Crossref | Medline41. Oakley, BB, Fiedler, TL, Marrazzo, JM, et al. Diversity of human vaginal bacterial communities and associations with clinically defined bacterial vaginosis. Appl Environ Microbiol 2008; 74(15): 4898–4909.
Google Scholar | Crossref | Medline42. Brook, I . Microbiology and antimicrobial management of sinusitis. J Laryngol Otol 2005; 119: 251–258.
Google Scholar | Crossref | Medline43. Teles, FR, Teles, RP, Uzel, NG, et al. Early microbial succession in redeveloping dental biofilms in periodontal health and disease. J Periodontal Res 2012; 47(1): 95–104.
Google Scholar | Crossref | Medline44. Umeda, M, Chen, C, Bakker, I, et al. Risk indicators for harboring periodontal pathogens. J Periodontol 1998; 69(10): 1111–1118.
Google Scholar | Crossref | Medline45. Akcalı, A, Bostanci, N, Özçaka, Ö, et al. Association between polycystic ovary syndrome, oral microbiota and systemic antibody responses. PLoS ONE 2014; 9(9): e108074.
Google Scholar | Crossref | Medline46. Kelley, ST, Skarra, DV, Rivera, AJ, et al. The gut microbiome is altered in a letrozole-induced mouse model of polycystic ovary syndrome. PLoS ONE 2016; 11(1): e0146509.
Google Scholar | Crossref

留言 (0)

沒有登入
gif