Does remnant tissue preservation in anterior cruciate ligament reconstruction influence the creation of the rectangular femoral tunnel?

1. Wright, RW, Wright, RW, Huston, LJ, et al. Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 2010; 38: 1979–1986.
Google Scholar | SAGE Journals | ISI2. Trojani, C., Sbihi, A., Djian, P., et al. Causes for failure of ACL reconstruction and influence of meniscectomies after revision. Knee Surg Sports Traumatol Arthrosc 2011; 19: 196–201.
Google Scholar | Crossref | Medline | ISI3. Crain, EH, Fithian, DC, Paxton, EW, et al. Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees? Arthrosc J Arthroscopic Relat Surg 2005; 21: 19–24.
Google Scholar | Crossref | Medline | ISI4. Kim, MK, Lee, SR, Ha, JK, et al.. Comparison of second-look arthroscopic findings and clinical results according to the amount of preserved remnant in anterior cruciate ligament reconstruction. Knee 2014; 21: 774–778.
Google Scholar | Crossref | Medline5. Lee, BI, Kim, CH, Jang, BW, et al. Preservation of the tibial remnant in anterior cruciate ligament reconstruction may improve postoperative proprioceptive function. Orthopedics 2020; 43: e231–e236.
Google Scholar | Crossref | Medline6. Nakase, J., Toratani, T., Kosaka, M., et al. Roles of ACL remnants in knee stability. Knee Surg Sports Traumatol Arthrosc 2013; 21: 2101–2106.
Google Scholar | Crossref | Medline | ISI7. Zhang, S, Matsumoto, T, Uefuji, A, et al. Anterior cruciate ligament remnant tissue harvested within 3-months after injury predicts higher healing potential. BMC Musculoskelet Disord 2015; 16: 390.
Google Scholar | Crossref | Medline | ISI8. Nakase, J, Toratani, T, Kosaka, M, et al.. Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator. Knee 2016; 23: 91–96.
Google Scholar | Crossref | Medline9. Oshima, T, Nakase, J, Numata, H, et al. The cross-sectional shape of the fourfold semitendinosus tendon is oval, not round. J Exp Orthopaedics 2016; 3: 28.
Google Scholar | Crossref | Medline10. Takata, Y, Nakase, J, Oshima, T, et al. No difference in the graft shift between a round and a rounded rectangular femoral tunnel for anterior cruciate ligament reconstruction: an experimental study. Arch Orthopaedic Trauma Surg 2018; 138: 1249–1255.
Google Scholar | Crossref | Medline11. Wen, Z, Zhang, H, Yan, W, et al. Oval femoral tunnel technique is superior to the conventional round femoral tunnel technique using the hamstring tendon in anatomical anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2020; 28: 2245–2254.
Google Scholar | Crossref | Medline12. Zhao, F, Hu, X, Zhang, J, et al. A more flattened bone tunnel has a positive effect on tendon-bone healing in the early period after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 3543–3551.
Google Scholar | Crossref | Medline13. Koga, H, Muneta, T, Yagishita, K, et al. Evaluation of a behind-remnant approach for femoral tunnel creation in remnant-preserving double-bundle anterior cruciate ligament reconstruction - Comparison with a standard approach. Knee 2015; 22: 249–255.
Google Scholar | Crossref | Medline | ISI14. Muneta, T, Koga, H, Nakamura, T, et al. A new behind-remnant approach for remnant-preserving double-bundle anterior cruciate ligament reconstruction compared with a standard approach. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3743–3749.
Google Scholar | Crossref | Medline15. Tensho, K, Iwaasa, T, Shimodaira, H, et al. Anatomical remnant-preserving double-bundle ACL reconstruction with a new remnant augmentation technique. Arthrosc Tech 2020; 9: e283–e290.
Google Scholar | Crossref | Medline16. Bernard, M, Hertel, P, Hornung, H, et al. Femoral insertion of the ACL. Radiographic quadrant method. Am J Knee Surg 1997; 10: 14–22; discussion 21-12.
Google Scholar | Medline17. Forsythe, B, Kopf, S, Wong, AK, et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 2010; 92: 1418–1426.
Google Scholar | Crossref | Medline | ISI18. Oshima, T, Putnis, S, Grasso, S, et al. Graft size and orientation within the femoral notch affect graft healing at 1 year after anterior cruciate ligament reconstruction. Am J Sports Med 2020; 48: 99–108.
Google Scholar | SAGE Journals | ISI19. Irrgang, JJ, Anderson, AF, Boland, AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 2001; 29: 600–613.
Google Scholar | SAGE Journals | ISI20. Nakamura, N, Takeuchi, R, Ishikawa, H, et al. Cross-cultural adaptation and validation of the Japanese knee injury and osteoarthritis outcome score (KOOS). J Orthopaedic Sci 2011; 16: 516–523.
Google Scholar | Crossref | Medline | ISI21. Nawabi, DH, Tucker, S, Schafer, KA, et al. ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med 2016; 44: 2563–2571.
Google Scholar | SAGE Journals | ISI22. Śmigielski, R, Zdanowicz, U, Drwięga, M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc 2015; 23: 3143–3150.
Google Scholar | Crossref | Medline | ISI23. Śmigielski, R, Zdanowicz, U, Drwięga, M, et al. The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J 2016; 98-b: 1020–1026.
Google Scholar | Crossref | Medline24. Kondo, E, Merican, AM, Yasuda, K, et al. Biomechanical comparison of anatomic double-bundle, anatomic single-bundle, and nonanatomic single-bundle anterior cruciate ligament reconstructions. Am J Sports Med 2011; 39: 279–288.
Google Scholar | SAGE Journals | ISI25. Wan, F, Chen, T, Ge, Y, et al. Effect of nearly isometric ACL reconstruction on graft-tunnel motion: A quantitative clinical study. Orthopaedic J Sports Med 2019; 7: 2325967119890382.
Google Scholar | SAGE Journals | ISI26. Xu, H, Zhang, C, Zhang, Q, et al. A systematic review of anterior cruciate ligament femoral footprint location evaluated by quadrant method for single-bundle and double-bundle anatomic reconstruction. Arthrosc J Arthroscopic Relat Surg 2016; 32: 1724–1734.
Google Scholar | Crossref | Medline | ISI27. Robinson, J, Inderhaug, E, Harlem, T, et al. Anterior cruciate ligament femoral tunnel placement: An analysis of the intended versus achieved position for 221 international high-volume ACL surgeons. Am J Sports Med 2020; 48: 1088–1099.
Google Scholar | SAGE Journals | ISI28. Won, SH, Lee, BI, Park, SY, et al. Outcome differences of remnant- preserving versus non-preserving methods in arthroscopic anterior cruciate ligament reconstruction: a meta-analysis with subgroup analysis. Knee Surg Relat Res 2020; 32: 7.
Google Scholar | Crossref | Medline29. Koga, H, Muneta, T, Yagishita, K, et al. Effect of femoral tunnel position on graft tension curves and knee stability in anatomic double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2014; 22: 2811–2820.
Google Scholar | Crossref | Medline | ISI30. Takata, Y., Nakase, J., Numata, H., et al. Computed tomography value and tunnel enlargement of round and rounded rectangular femoral bone tunnel for anterior cruciate ligament reconstruction. Arch Orthopaedic Trauma Surg 2016; 136: 1587–1594.
Google Scholar | Crossref | Medline31. Chen, L, Wu, Y, Lin, G, et al. Graft bending angle affects allograft tendon maturity early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2018; 26: 3048–3054.
Google Scholar | Crossref | Medline32. Tashiro, Y, Irarrázaval, S, Osaki, K, et al. Comparison of graft bending angle during knee motion after outside-in, trans-portal and trans-tibial anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2017; 25: 129–137.
Google Scholar | Crossref | Medline33. Tashiro, Y, Gale, T, Sundaram, V, et al. The graft bending angle can affect early graft healing after anterior cruciate ligament reconstruction: In vivo analysis with 2 years' follow-up. Am J Sports Med 2017; 45: 1829–1836.
Google Scholar | SAGE Journals | ISI34. Park, JS, Park, JH, Wang, JH, et al. Comparison of femoral tunnel geometry, using in vivo 3-dimensional computed tomography, during transportal and outside-in single-bundle anterior cruciate ligament reconstruction techniques. Arthrosc J Arthroscopic Relat Surg 2015; 31: 83–91.
Google Scholar | Crossref | Medline | ISI35. Nakayama, H, Kambara, S, Iseki, T, et al. Double-bundle anterior cruciate ligament reconstruction with and without remnant preservation - Comparison of early postoperative outcomes and complications. The Knee 2017; 24: 1039–1046.
Google Scholar | Crossref | Medline36. Naraoka, T, Kimura, Y, Tsuda, E, et al. Is remnant preservation truly beneficial to anterior cruciate ligament reconstruction healing? clinical and magnetic resonance imaging evaluations of remnant-preserved reconstruction. Am J Sports Med 2017; 45: 1049–1058.
Google Scholar | SAGE Journals | ISI37. Wang, H, Liu, Z, Li, Y, et al. Is remnant preservation in anterior cruciate ligament reconstruction superior to the standard technique? A systematic review and meta-analysis. Biomed Res Int 2019; 2019: 1652901.
Google Scholar | Crossref | Medline38. Lee, JK., Jo, S., Lee, YL, et al. Anterior cruciate ligament remnant cells have different potentials for cell differentiation based on their location. Scientific Rep 2020; 10: 3097.
Google Scholar | Crossref | Medline39. Novaretti, JV, Astur, DC, Casadio, D, et al. Higher gene expression of healing factors in anterior cruciate ligament remnant in acute anterior cruciate ligament tear. Am J Sports Med 2018; 46: 1583–1591.
Google Scholar | SAGE Journals | ISI40. Iriuchishima, T, Goto, B, Ryu, K, et al. The Blumensaat's line morphology influences to the femoral tunnel position in anatomical ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27: 3638–3643.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif