Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study

1. Iijima, S . Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56-58. doi:10.1038/354056a0
Google Scholar | Crossref | ISI2. Peng, J, He, Y, Zhou, C, Su, S, Lai, B. The carbon nanotubes-based materials and their applications for organic pollutant removal: a critical review. Chin Chem Lett. 2020. DOI: 10.1016/j.cclet.2020.10.026
Google Scholar | Crossref3. Liu, Y, Liu, F, Ding, N, et al. Recent advances on electroactive CNT-based membranes for environmental applications: the perfect match of electrochemistry and membrane separation. Chin Chem Lett. 2020;31:2539-2548. doi:10.1016/j.cclet.2020.03.011.
Google Scholar | Crossref4. Sadighbayan, D, Hasanzadeh, M, Ghafar-Zadeh, E. Biosensing based on field-effect transistors (FET): recent progress and challenges. Trends Anal Chem. 2020;133:116067. doi:10.1016/j.trac.2020.116067
Google Scholar | Crossref | Medline5. Yang, H, Xu, W, Liang, X, Yang, Y, Zhou, Y. Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Mikrochim Acta. 2020;187(4):206. doi:10.1007/s00604-020-4172-4
Google Scholar | Crossref | Medline6. Joseph, B, K, SV, Sabu, C, Kalarikkal, N, Thomas, S. Cellulose nanocomposites: fabrication and biomedical applications. J Bioresour Bioprod. 2020;5(4):223-237. DOI: 10.1016/j.jobab.2020.10.001
Google Scholar | Crossref7. Zhang, Y, Zhang, Y, Wu, J, et al. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Contr Release. 2021;330:945-962. doi:10.1016/j.jconrel.2020.10.067
Google Scholar | Crossref | Medline8. Jović, D, Jaćević, V, Kuča, K, et al. The puzzling potential of carbon nanomaterials: general properties, application, and toxicity. Nanomaterials. 2020;10(8):1508. doi:10.3390/nano10081508
Google Scholar | Crossref9. Guseva Canu, I, Batsungnoen, K, Maynard, A, Hopf, NB. State of knowledge on the occupational exposure to carbon nanotubes. Int J Hyg Environ Health. 2020;225:113472. doi:10.1016/j.ijheh.2020.113472
Google Scholar | Crossref | Medline10. Feng, X, Xu, W, Li, Z, Song, W, Ding, J, Chen, X. Immunomodulatory Nanosystems. Adv Sci (Weinheim, Baden-Wurttemberg, Ger. 2019;6(17):1900101. doi:10.1002/advs.201900101
Google Scholar | Crossref | Medline11. Madannejad, R, Shoaie, N, Jahanpeyma, F, Darvishi, MH, Azimzadeh, M, Javadi, H. Toxicity of carbon-based nanomaterials: reviewing recent reports in medical and biological systems. Chem Biol Interact. 2019;307:206-222. doi:10.1016/j.cbi.2019.04.036
Google Scholar | Crossref | Medline12. Cao, Y, Long, J, Ji, Y, et al. Foam cell formation by particulate matter (PM) exposure: a review. Inhal Toxicol. 2016;28(13):583-590. doi:10.1080/08958378.2016.1236157
Google Scholar | Crossref | Medline13. Cao, Y . Potential roles of Kruppel‐like factors in mediating adverse vascular effects of nanomaterials: a review. J Appl Toxicol. 2021. in press. doi:10.1002/jat.4172
Google Scholar | Crossref14. Saleem, J, Wang, L, Chen, C. Carbon-Based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv Healthc Mater. 2018;7(20):1800525. doi:10.1002/adhm.201800525
Google Scholar | Crossref15. Cao, Y, Luo, Y. Pharmacological and toxicological aspects of carbon nanotubes (CNTs) to vascular system: a review. Toxicol Appl Pharmacol. 2019;385:114801. doi:10.1016/j.taap.2019.114801
Google Scholar | Crossref | Medline16. Cao, Y, Jacobsen, NR, Danielsen, PH, et al. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci. 2014;138(1):104-116. doi:10.1093/toxsci/kft328
Google Scholar | Crossref | Medline17. Yang, T, Chen, J, Gao, L, Huang, Y, Liao, G, Cao, Y. Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: a transcriptomic study. Toxicol Lett. 2020;332:65-73. DOI: 10.1016/j.toxlet.2020.07.007
Google Scholar | Crossref | Medline18. Fujita, K, Obara, S, Maru, J, Endoh, S. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol Mech Methods. May 2020;30:477-489. doi:10.1080/15376516.2020.1761920
Google Scholar | Crossref | Medline19. Cohignac, V, Landry, MJ, Ridoux, A, et al. Carbon nanotubes, but not spherical nanoparticles, block autophagy by a shape-related targeting of lysosomes in murine macrophages. Autophagy. 2018;14(8):1323-1334. doi:10.1080/15548627.2018.1474993
Google Scholar | Crossref | Medline20. Zhang, T, Tang, M, Kong, L, Li, H, Zhang, T, Xue, Y, et al. Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. J Hazard Mater. 2015;284:73-82. doi:10.1016/j.jhazmat.2014.11.013
Google Scholar | Crossref | Medline21. Long, J, Ma, W, Yu, Z, Liu, H, Cao, Y. Multi-walled carbon nanotubes (MWCNTs) promoted lipid accumulation in THP-1 macrophages through modulation of endoplasmic reticulum (ER) stress. Nanotoxicology. 2019;13(7):938-951. doi:10.1080/17435390.2019.1597204
Google Scholar | Crossref | Medline22. Shi, C, Guo, H, Wu, T, Tao, N, Wang, X, Zhong, J. Effect of three types of thermal processing methods on the lipidomics profile of tilapia fillets by UPLC-Q-Extractive orbitrap mass spectrometry. Food Chem. 2019;298:125029. DOI: 10.1016/j.foodchem.2019.125029
Google Scholar | Crossref | Medline23. Wang, S, Ma, J, Guo, S, Huang, Y, Cao, Y. Transcriptomic analysis revealed that multi-walled carbon nanotubes diameter-dependently induced pyroptosis in THP-1 macrophages. NanoImpact. 2020;20:100270. DOI: 10.1016/j.impact.2020.100270
Google Scholar | Crossref24. Sun, Y, Gong, J, Cao, Y. Multi-walled carbon nanotubes (MWCNTs) activate apoptotic pathway through er stress: does surface chemistry matter? Int J Nanomed. 2019;14:9285-9294. doi:10.2147/IJN.S217977
Google Scholar | Crossref | Medline25. Yang, H, Li, J, Yang, C, Liu, H, Cao, Y. Multi-walled carbon nanotubes promoted lipid accumulation in human aortic smooth muscle cells. Toxicol Appl Pharmacol. 2019;374:11-19. doi:10.1016/j.taap.2019.04.022
Google Scholar | Crossref | Medline26. Zhao, C, Zhou, Y, Liu, L, et al. Lipid accumulation in multi-walled carbon nanotube-exposed HepG2 cells: possible role of lipophagy pathway. Food Chem Toxicol. 2018;121:65-71. doi:10.1016/j.fct.2018.08.033
Google Scholar | Crossref | Medline27. Chatterjee, N, Choi, J. Endoplasmic reticulum stress mediated apoptosis via JNK in MWCNT-exposed in vitro systems: size, surface functionalization and cell type specificity. J Toxicol Sci. 2020;45(6):305-317. doi:10.2131/jts.45.305
Google Scholar | Crossref | Medline28. Petrick, L, Rosenblat, M, Paland, N, Aviram, M. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol. 2016;31(6):713-723. doi:10.1002/tox.22084
Google Scholar | Crossref | Medline29. Ma, R, Qi, Y, Zhao, X, et al. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE−/− mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol. 2020;17(1):50. doi:10.1186/s12989-020-00380-0
Google Scholar | Crossref | Medline30. Suzuki, Y, Tada-Oikawa, S, Ichihara, G, et al. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation. Toxicol Appl Pharmacol. 2014;278(1):16-25. doi:10.1016/j.taap.2014.04.010
Google Scholar | Crossref | Medline31. Cao, Y, Roursgaard, M, Danielsen, PH, Møller, P, Loft, S. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One. 2014;9(9):e106711. doi:10.1371/journal.pone.0106711
Google Scholar | Crossref | Medline32. Luo, Y, Peng, J, Huang, C, Cao, Y. Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicol Environ Saf. 2020;199:110714. doi:10.1016/j.ecoenv.2020.110714
Google Scholar | Crossref | Medline33. Shannahan, JH, Sowrirajan, H, Persaud, I, Podila, R, Brown, JM. Impact of silver and iron nanoparticle exposure on cholesterol uptake by macrophages. J Nanomater. 2015;2015:1-12. doi:10.1155/2015/127235
Google Scholar | Crossref34. Lin, J, Jiang, Y, Luo, Y, et al. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. J Hazard Mater. 2020;392:122286. doi:10.1016/j.jhazmat.2020.122286
Google Scholar | Crossref | Medline35. Liu, Y, Hu, Q, Huang, C, Cao, Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NanoImpact. 2021;23:100333. DOI: 10.1016/j.impact.2021.100333
Google Scholar | Crossref36. Xie, M, Huang, C, Liang, Y, Li, S, Sheng, L, Cao, Y. MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. Chin Chem Lett. 2021. DOI: 10.1016/j.cclet.2021.06.049
Google Scholar | Crossref37. Cao, Y, Long, J, Liu, L, et al. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 2017;186:33-42. doi:10.1016/j.lfs.2017.08.003
Google Scholar | Crossref | Medline38. Khan, AA, Allemailem, KS, Almatroudi, A, et al. Endoplasmic reticulum stress provocation by different nanoparticles: an innovative approach to manage the cancer and other common diseases. Molecules. 2020;25(22):5336. doi:10.3390/molecules25225336
Google Scholar | Crossref39. Yang, Q, Wang, M, Sun, Y, Peng, S, Ding, Y, Cao, Y. Pre-incubated with BSA-complexed free fatty acids alters ER stress/autophagic gene expression by carboxylated multi-walled carbon nanotube exposure in THP-1 macrophages. Chin Chem Lett. 2019;30(6):1224-1228. doi:10.1016/j.cclet.2019.03.042
Google Scholar | Crossref40. Guo, C, Ma, R, Liu, X, et al. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Sci Total Environ. 2018;631-632:570-579. doi:10.1016/j.scitotenv.2018.02.312
Google Scholar | Crossref | Medline41. van der Valk, FM, Schulte, DM, Meiler, S, et al. Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine. 2016;12(6):1463-1470. doi:10.1016/j.nano.2016.02.022
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif