Quantitative susceptibility mapping as a measure of cerebral oxygenation in neonatal piglets

1. Pin, TW, Eldridge, B, Galea, MP. A review of developmental outcomes of term infants with post-asphyxia neonatal encephalopathy. Eur J Paediatr Neurol 2009; 13: 224–234.
Google Scholar | Crossref | Medline2. Pappas, A, Shankaran, S, McDonald, SA, et al.; for the Hypothermia Extended Follow-up Subcommittee of the Eunice Kennedy Shriver NICHD Neonatal Research Network . Cognitive outcomes after neonatal encephalopathy. Pediatrics 2015; 135: e624–e634.
Google Scholar | Crossref | Medline3. Vohr, BR, Stephens, BE, McDonald, SA, et al.; on behalf of the Extended Hypothermia Follow-up Subcommittee of the NICHD Neonatal Research Network . Cerebral palsy and growth failure at 6 to 7 years. Pediatrics 2013; 132: e905–e914.
Google Scholar | Crossref | Medline4. Barkovich, AJ, Hajnal, BL, Vigneron, D, et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol 1998; 19: 143–149.
Google Scholar | Medline | ISI5. Wintermark, P, Moessinger, AC, Gudinchet, F, et al. Temporal evolution of MR perfusion in neonatal hypoxic-ischemic encephalopathy. J Magn Reson Imaging 2008; 27: 1229–1234.
Google Scholar | Crossref | Medline | ISI6. Fatemi, A, Wilson, MA, Johnston, MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol 2009; 36: 835–858, vii.
Google Scholar | Crossref | Medline7. Rutherford, MA, Supramaniam, V, Ederies, A, et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 2010; 52: 505–521.
Google Scholar | Crossref | Medline8. Thayyil, S, Chandrasekaran, M, Taylor, A, et al. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010; 125: e382–e395.
Google Scholar | Crossref | Medline | ISI9. Martinez-Biarge, M, Diez-Sebastian, J, Kapellou, O, et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 2011; 76: 2055–2061.
Google Scholar | Crossref | Medline | ISI10. Corbo, ET, Bartnik-Olson, BL, Machado, S, et al. The effect of whole-body cooling on brain metabolism following perinatal hypoxic-ischemic injury. Pediatr Res 2012; 71: 85–92.
Google Scholar | Crossref | Medline11. Degraeuwe, P, Jaspers, GJ, Robertson, NJ, et al. Magnetic resonance spectroscopy as a prognostic marker in neonatal hypoxic-ischemic encephalopathy: a study protocol for an individual patient data meta-analysis. Syst Rev 2013; 2: 96–10.
Google Scholar | Crossref | Medline12. Agut, T, Leon, M, Rebollo, M, et al. Early identification of brain injury in infants with hypoxic ischemic encephalopathy at high risk for severe impairments: accuracy of MRI performed in the first days of life. BMC Pediatr 2014; 14: 177–107.
Google Scholar | Crossref | Medline13. Wintermark, P, Moessinger, AC, Gudinchet, F, et al. Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates. J Magn Reson Imaging 2008; 28: 1019–1025.
Google Scholar | Crossref | Medline14. Kurinczuk, JJ, White-Koning, M, Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010; 86: 329–338.
Google Scholar | Crossref | Medline15. Haacke, EM, Mittal, S, Wu, Z, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009; 30: 19–30.
Google Scholar | Crossref | Medline | ISI16. Haacke, EM, Tang, J, Neelavalli, J, et al. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010; 32: 663–676.
Google Scholar | Crossref | Medline | ISI17. Jain, V, Abdulmalik, O, Propert, KJ, et al. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med 2012; 68: 863–867.
Google Scholar | Crossref | Medline | ISI18. Portnoy, S, Milligan, N, Seed, M, et al. Human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med 2018; 79: 3194–3206.
Google Scholar | Crossref | Medline19. Spees, WM, Yablonskiy, DA, Oswood, MC, et al. Water proton MR properties of human blood at 1.5 tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 2001; 45: 533–542.
Google Scholar | Crossref | Medline | ISI20. Kitamura, G, Kido, D, Wycliffe, N, et al. Hypoxic-ischemic injury: utility of susceptibility-weighted imaging. Pediatr Neurol 2011; 45: 220–224.
Google Scholar | Crossref | Medline21. Benninger, KL, Maitre, NL, Ruess, L, et al. MR imaging scoring system for white matter injury after deep medullary vein thrombosis and infarction in neonates. AJNR Am J Neuroradiol 2019; 40: 347–352.
Google Scholar | Crossref | Medline22. Verma, RK, Keller, D, Grunt, S, et al. Decreased oxygen saturation levels in neonates with transposition of great arteries: impact on appearance of cerebral veins in susceptibility-weighted imaging. Sci Rep 2017; 7: 15471.
Google Scholar | Crossref | Medline23. Lin, W, Paczynski, RP, Celik, A, et al. Effects of acute normovolemic hemodilution on T2*-weighted images of rat brain. Magn Reson Med 1998; 40: 857–864.
Google Scholar | Crossref | Medline24. Lin, W, Paczynski, RP, Celik, A, et al. Experimental hypoxemic hypoxia: changes in R2* of brain parenchyma accurately reflect the combined effects of changes in arterial and cerebral venous oxygen saturation. Magn Reson Med 1998; 39: 474–481.
Google Scholar | Crossref | Medline | ISI25. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 2020; 40: 1769–1777.
Google Scholar | SAGE Journals | ISI26. Bishai, JM, Blood, AB, Hunter, CJ, et al. Fetal lamb cerebral blood flow (CBF) and oxygen tensions during hypoxia: a comparison of laser doppler and microsphere measurements of CBF. J Physiol 2003; 546: 869–878.
Google Scholar | Crossref | Medline27. Haacke, EM, Liu, S, Buch, S, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging 2015; 33: 1–25.
Google Scholar | Crossref | Medline | ISI28. Lin, PY, Chao, TC, Wu, ML. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study. AJNR Am J Neuroradiol 2015; 36: 467–474.
Google Scholar | Crossref | Medline29. Reichenbach, JR, Schweser, F, Serres, B, et al. Quantitative susceptibility mapping: concepts and applications. Clin Neuroradiol 2015; 25 Suppl 2: 225–230. 2015/07/23.
Google Scholar | Crossref | Medline30. Deistung, A, Schweser, F, Reichenbach, JR. Overview of quantitative susceptibility mapping. NMR Biomed 2017; 30: e3569.
Google Scholar | Crossref31. Ruetten, PPR, Gillard, JH, Graves, MJ. Introduction to quantitative susceptibility mapping and susceptibility weighted imaging. Br J Radiol 2019; 92: 20181016.
Google Scholar | Crossref | Medline32. Chen, Y, Liu, S, Buch, S, et al. An interleaved sequence for simultaneous magnetic resonance angiography (MRA), susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM). Magn Reson Imaging 2018; 47: 1–6.
Google Scholar | Crossref | Medline33. Wang, Y, Chen, Y, Wu, D, et al. STrategically acquired gradient echo (STAGE) imaging, part II: correcting for RF inhomogeneities in estimating T1 and proton density. Magn Reson Imaging 2018; 46: 140–150.
Google Scholar | Crossref | Medline34. Haacke, EM, Chen, Y, Utriainen, D, et al. STrategically acquired gradient echo (STAGE) imaging, part III: technical advances and clinical applications of a rapid multi-contrast multi-parametric brain imaging method. Magn Reson Imaging 2020; 65: 15–26.
Google Scholar | Crossref | Medline35. Abdul-Rahman, HS, Gdeisat, MA, Burton, DR, et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt 2007; 46: 6623–6635.
Google Scholar | Crossref | Medline | ISI36. Smith, SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–155.
Google Scholar | Crossref | Medline | ISI37. Witoszynskyj, S, Rauscher, A, Reichenbach, JR, et al. Phase unwrapping of MR images using phi UN – a fast and robust region growing algorithm. Med Image Anal 2009; 13: 257–268.
Google Scholar | Crossref | Medline38. Schweser, F, Deistung, A, Lehr, BW, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 2011; 54: 2789–2807.
Google Scholar | Crossref | Medline | ISI39. Dimov, AV, Christoforidis, GA, Saadat, N, et al. QSM in canine model of acute cerebral ischemia: a pilot study. Magn Reson Med 2021; 85: 1602–1610.
Google Scholar | Crossref | Medline40. Fan, AP, Khalil, AA, Fiebach, JB, et al. Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. J Cereb Blood Flow Metab 2020; 40: 539–551.
Google Scholar | SAGE Journals | ISI41. Hsieh, MC, Tsai, CY, Liao, MC, et al. Quantitative susceptibility mapping-based microscopy of magnetic resonance venography (QSM-mMRV) for in vivo morphologically and functionally assessing cerebromicrovasculature in rat stroke model. PLoS One 2016; 11: e0149602.
Google Scholar | Crossref | Medline42. Kudo, K, Liu, T, Murakami, T, et al. Oxygen extraction fraction measurement using quantitative susceptibility mapping: comparison with positron emission tomography. J Cereb Blood Flow Metab 2016; 36: 1424–1433.
Google Scholar | SAGE Journals | ISI43. Uwano, I, Kudo, K, Sato, R, et al. Noninvasive assessment of oxygen extraction fraction in chronic ischemia using quantitative susceptibility mapping at 7 tesla. Stroke 2017; 48: 2136–2141.
Google Scholar | Crossref | Medline44. Vaas, M, Deistung, A, Reichenbach, JR, et al. Vascular and tissue changes of magnetic susceptibility in the mouse brain after transient cerebral ischemia. Transl Stroke Res 2018; 9: 426–435.
Google Scholar | Crossref | Medline45. Kao, HW, Tsai, FY, Hasso, AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 2012; 22: 1397–1403.
Google Scholar | Crossref | Medline46. Gang, Q, Zhang, J, Hao, P, et al. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging. Eur J Radiol 2013; 82: 1973–1980.
Google Scholar | Crossref | Medline47. Chen, CY, Chen, CI, Tsai, FY, et al. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: prediction of infarct growth and clinical outcome. PLoS One 2015; 10: e0131118.
Google Scholar | Crossref | Medline48. Wang, D, Zhu, F, Fung, KM,

留言 (0)

沒有登入
gif