Correlations Between the DMN and the Smoking Cessation Outcome of a Real-Time fMRI Neurofeedback Supported Exploratory Therapy Approach: Descriptive Statistics on Tobacco-Dependent Patients

1. Griffith, EE, Crossman, E. Biofeedback: a possible substitute for smoking, experiment I. Addict Behav. 1983;8(3):277‐285. doi:10.1016/0306-4603(83)90023-0.
Google Scholar | Crossref | Medline2. Hamm, E, Muramoto, ML, Howerter, A, Floden, L, Govindarajan, L. Use of provider-based complementary and alternative medicine by adult smokers in the United States: comparison from the 2002 and 2007 NHIS survey. American journal of health promotion : AJHP. 2014;29(2):127‐131. doi:10.4278/ajhp.121116-QUAN-559.
Google Scholar | SAGE Journals | ISI3. LuiBiofeedbackgjes, J, Segrave, R, de Joode, N, Figee, M, Denys, D. Efficacy of invasive and Non-invasive brain modulation interventions for addiction. Neuropsychol Rev. 2019;29(1):116‐138. doi:10.1007/s11065-018-9393-5.
Google Scholar | Crossref | Medline4. Logothetis, NK, Pauls, J, Augath, M, Trinath, T, Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150‐157. doi:10.1038/35084005.
Google Scholar | Crossref | Medline | ISI5. Ogawa, S, Lee, TM, Kay, AR, Tank, DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868‐9872. doi:10.1073/pnas.87.24.9868.
Google Scholar | Crossref | Medline | ISI6. Linden, DE, Habes, I, Johnston, SJ, et al. Real-time self-regulation of emotion networks in patients with depression. PLoS One. 2012;7(6):e38115. doi:10.1371/journal.pone.0038115PONE-D-11-22815 [pii].
Google Scholar | Crossref | Medline7. Orlov, ND, Giampietro, V, O'Daly, O, et al. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study. Transl Psychiatry. 2018;8(1):46. doi:10.1038/s41398-017-0067-5.
Google Scholar | Crossref | Medline8. Zweerings, J, Hummel, B, Keller, M, et al. Neurofeedback of core language network nodes modulates connectivity with the default-mode network: a double-blind fMRI neurofeedback study on auditory verbal hallucinations. Neuroimage. 2019;189:533‐542. doi:10.1016/j.neuroimage.2019.01.058.
Google Scholar | Crossref | Medline9. Ruiz, S, Lee, S, Soekadar, SR, et al. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp. 2013;34(1):200‐212. DOI: 10.1002/hbm.21427.
Google Scholar | Crossref | Medline10. Kim, S, Birbaumer, N. Real-time functional MRI neurofeedback: a tool for psychiatry. Curr Opin Psychiatry. 2014;27(5):332‐336. doi:10.1097/YCO.0000000000000087.
Google Scholar | Crossref | Medline11. Young, KD, Zotev, V, Phillips, R, Misaki, M, Drevets, WC, Bodurka, J. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: a review. Psychiatry ClinThe Journal of Molecular Diagnosticshe Journal of Physical Chemistry C. 2018;72(7):466‐481. doi:10.1111/pcn.12665.
Google Scholar | Crossref12. Fovet, T, Jardri, R, Linden, D. Current issues in the Use of fMRI-based neurofeedback to relieve psychiatric symptoms. Curr Pharm Des. 2015;21(23):3384‐3394. doi:10.2174/1381612821666150619092540.
Google Scholar | Crossref | Medline13. Liew, SL, Rana, M, Cornelsen, S, et al. Improving motor corticothalamic communication after stroke using real-time fMRI connectivity-based neurofeedback. Neurorehabil Neural Repair. 2016;30(7):671‐675. doi:10.1177/1545968315619699.
Google Scholar | SAGE Journals | ISI14. Canterberry, M, Hanlon, CA, Hartwell, KJ, et al. Sustained reduction of nicotine craving with real-time neurofeedback: exploring the role of severity of dependence. Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco. 2013;15(12):2120‐2124. doi:10.1093/ntr/ntt122.
Google Scholar | Crossref | Medline15. Hanlon, CA, Hartwell, KJ, Canterberry, M, et al. Reduction of cue-induced craving through realtime neurofeedback in nicotine users: the role of region of interest selection and multiple visits. Psychiatry Res. 2013;213(1):79‐81. doi:10.1016/j.pscychresns.2013.03.003.
Google Scholar | Crossref | Medline16. Hartwell, KJ, Hanlon, CA, Li, X, et al. Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers. Journal of psychiatry & neuroscience : JPN. 2016;41(1):48‐55.
Google Scholar | Crossref | Medline17. Karch, S, Paolini, M, Gschwendtner, S, et al. Real-Time fMRI neurofeedback in patients With tobacco Use disorder during smoking cessation: functional differences and implications of the first training session in regard to future abstinence or relapse. Front Hum Neurosci. 2019;13:65. doi:10.3389/fnhum.2019.00065
Google Scholar | Crossref | Medline18. Kim, DY, Yoo, SS, Tegethoff, M, Meinlschmidt, G, Lee, JH. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings. J Cogn Neurosci. 2015;27(8):1552‐1572. doi:10.1162/jocn_a_00802.
Google Scholar | Crossref | Medline19. Li, X, Hartwell, KJ, Borckardt, J, et al. Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addict Biol. 2013;18(4):739‐748. doi:10.1111/j.1369-1600.2012.00449.x.
Google Scholar | Crossref | Medline20. Karch, S, Keeser, D, Hummer, S, et al. Modulation of craving related brain responses using real-time fMRI in patients with alcohol Use disorder. PLoS One. 2015;10(7):e0133034. doi:10.1371/journal.pone.0133034PONE-D-15-11895 [pii].
Google Scholar | Crossref | Medline21. Fedota, JR, Stein, EA. Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Ann N Y Acad Sci. 2015;1349:64‐82. doi:10.1111/nyas.12882.
Google Scholar | Crossref | Medline22. Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537‐541. doi:10.1002/mrm.1910340409.
Google Scholar | Crossref | Medline | ISI23. Damoiseaux, JS, Rombouts, SA, Barkhof, F, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848‐13853. doi:10.1073/pnas.0601417103.
Google Scholar | Crossref | Medline | ISI24. Fox, MD, Snyder, AZ, Vincent, JL, Corbetta, M, Van Essen, DC, Raichle, ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673‐9678. doi:10.1073/pnas.0504136102.
Google Scholar | Crossref | Medline | ISI25. Laird, AR, Fox, PM, Eickhoff, SB, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23(12):4022‐4037. doi:10.1162/jocn_a_00077.
Google Scholar | Crossref | Medline26. Zuo, XN, Kelly, C, Adelstein, JS, Klein, DF, Castellanos, FX, Milham, MP. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage. 2010;49(3):2163‐2177. doi:10.1016/j.neuroimage.2009.10.080.
Google Scholar | Crossref | Medline27. Lerman, C, Gu, H, Loughead, J, Ruparel, K, Yang, Y, Stein, EA. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA psychiatry. 2014;71(5):523‐530. doi:10.1001/jamapsychiatry.2013.4091.
Google Scholar | Crossref | Medline28. Sutherland, MT, Stein, EA. Functional neurocircuits and neuroimaging biomarkers of tobacco Use disorder. Trends Mol Med. 2018;24(2):129‐143. doi:10.1016/j.molmed.2017.12.002.
Google Scholar | Crossref | Medline29. Andrews-Hanna, JR, Reidler, JS, Sepulcre, J, Poulin, R, Buckner, RL. Functional-anatomic fractionation of the brain's Default network. Neuron. 2010;65(4):550‐562. doi:10.1016/j.neuron.2010.02.005.
Google Scholar | Crossref | Medline | ISI30. Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain's Default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1‐38. doi:10.1196/annals.1440.011.
Google Scholar | Crossref | Medline | ISI31. Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676‐682. doi:10.1073/pnas.98.2.676.
Google Scholar | Crossref | Medline | ISI32. Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2007;27(9):2349‐2356. doi:10.1523/JNEUROSCI.5587-06.2007.
Google Scholar | Crossref | Medline | ISI33. Menon, V . Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci (Regul Ed). 2011;15(10):483‐506. doi:10.1016/j.tics.2011.08.003.
Google Scholar | Crossref | Medline34. Fedota, JR, Ding, X, Matous, AL, et al. Nicotine abstinence influences the calculation of salience in discrete insular circuits. Biological psychiatry Cognitive neuroscience and neuroimaging. 2018;3(2):150‐159. doi:10.1016/j.bpsc.2017.09.010.
Google Scholar | Crossref | Medline35. Addicott, MA, Sweitzer, MM, Froeliger, B, Rose, JE, McClernon, FJ. Increased functional connectivity in an Insula-based network is associated with improved smoking cessation outcomes. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2015;40(11):2648‐2656. doi:10.1038/npp.2015.114.
Google Scholar | Crossref | Medline36. Janes, AC, Pizzagalli, DA, Richardt, S, et al. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry. 2010;67(8):722‐729. doi:10.1016/j.biopsych.2009.12.034.
Google Scholar | Crossref | Medline37. Zelle, SL, Gates, KM, Fiez, JA, Sayette, MA, Wilson, SJ. The first day is always the hardest: functional connectivity during cue exposure and the ability to resist smoking in the initial hours of a quit attempt. Neuroimage. 2017;151:24‐32. doi:10.1016/j.neuroimage.2016.03.015.
Google Scholar | Crossref | Medline38. Zhang, R, Volkow, ND. Brain default-mode network dysfunction in addiction. Neuroimage. 2019;200:313‐331. doi:10.1016/j.neuroimage.2019.06.036.
Google Scholar | Crossref | Medline39. Li, Q, Li, Z, Li, W, et al. Disrupted default mode network and basal craving in male heroin-dependent individuals: a resting-state fMRI study. J Clin Psychiatry. 2016;77(10):e1211‐e12e7. doi:10.4088/JCP.15m09965.
Google Scholar | Crossref | Medline40. Shahbabaie, A, Ebrahimpoor, M, Hariri, A, et al. Transcranial DC stimulation modifies functional connectivity of large-scale brain networks in abstinent methamphetamine users. Brain Behav. 2018;8(3):e00922. doi:10.1002/brb3.922.
Google Scholar | Crossref | Medline41. Wilcox, CE, Claus, ED, Calhoun, VD, et al. Default mode network deactivation to smoking cue relative to food cue predicts treatment outcome in nicotine use disorder. Addict Biol. 2018;23(1):412‐424. doi:10.1111/adb.12498.
Google Scholar | Crossref | Medline42. Kroeger, CB, Gradl, S. Das Rauchfrei Programm. Ein Manual zur Tabakentwöhnung. IFT Gesundheitsförderung GmbH; 2007.
Google Scholar

留言 (0)

沒有登入
gif