Is the magnesium screw as stable as the titanium screw in the fixation of first metatarsal distal chevron osteotomy? A comparative biomechanical study on sawbones models

1. Coughlin, MJ, Jones, CP. Hallux valgus: demographics, etiology, and radiographic assessment. Foot Ankle Intern 2007; 28(7): 759–777.
Google Scholar | SAGE Journals | ISI2. Mann, RACM . Adult hallux valgus. In: Coughlin, MJMR (ed). Surgery of the foot and ankle; 1999, pp. 150–269.
Google Scholar3. Coughlin, MJ . Hallux valgus. J Bone Joint Surg Am Vol 1996; 78(6): 932–966.
Google Scholar | Crossref | Medline | ISI4. Schneider, W, Knahr, K. Surgery for hallux valgus. the expectations of patients and surgeons. Int Orthopaedics 2001; 25(6): 382–385.
Google Scholar | Crossref | Medline | ISI5. Miller, S, Croce, WA. The Austin procedure for surgical correction of hallux abducto valgus deformity. J Am Podiatry Assoc 1979; 69(2): 110–118.
Google Scholar | Crossref | Medline | ISI6. Austin, DW, Leventen, EO. A new osteotomy for hallux valgus: a horizontally directed “V” displacement osteotomy of the metatarsal head for hallux valgus and primus varus. Clin Orthopaedics Related Research 1981; 157: 25–30.
Google Scholar7. Yearian, PR, Brown, T, Goldman, F. Chevron bunionectomy with microplate and screw fixation: a retrospective follow-up of 26 feet. J Foot Ankle Surg Off Pub Am Coll Foot Ankle Surg 1996; 35(6): 532–536.
Google Scholar | Crossref | Medline8. DeFronzo, DJ, Landsman, AR, Landsman, AS, et al. Austin bunionectomy with 3M Staplizer fixation. An assessment of 20 cases. J Am Podiatric Med Assoc 1991; 81(3): 140–149.
Google Scholar | Crossref | Medline9. Farraro, KF, Kim, KE, Woo, SL, et al. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomechanics 2014; 47(9): 1979–1986.
Google Scholar | Crossref | Medline10. Sonnow, L, Könneker, S, Vogt, PM, et al. Biodegradable magnesium Herbert screw—image quality and artifacts with radiography, CT and MRI. BMC Med Imag 2017; 17(1): 16.
Google Scholar | Crossref | Medline11. An, J, Jia, P, Zhang, Y, et al. Application of biodegradable plates for treating pediatric mandibular fractures. J Cranio-Maxillo-Facial Surg Offi Pub Eur Assoc Cranio-Maxillo-Facial Surg 2015; 43(4): 515–520.
Google Scholar | Crossref | Medline12. Windhagen, H, Radtke, K, Weizbauer, A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online 2013; 12: 62.
Google Scholar | Crossref | Medline | ISI13. Kose, O, Turan, A, Unal, M, et al. Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Arch Orthopaedic Trauma Surg 2018; 138(8): 1069–1075.
Google Scholar | Crossref | Medline14. Schepers, T, Van Lieshout, EM, de Vries, MR, et al. Complications of syndesmotic screw removal. Foot Ankle Intern 2011; 32(11): 1040–1044.
Google Scholar | SAGE Journals | ISI15. Hanson, B, van der Werken, C, Stengel, D. Surgeons’ beliefs and perceptions about removal of orthopaedic implants. BMC Musculoskeletal Disorders 2008; 9: 73.
Google Scholar | Crossref | Medline | ISI16. Brown, OL, Dirschl, DR, Obremskey, WT. Incidence of hardware-related pain and its effect on functional outcomes after open reduction and internal fixation of ankle fractures. J Orthopaedic Trauma 2001; 15(4): 271–274.
Google Scholar | Crossref | Medline | ISI17. Rossi, WR, Ferreira, JC. Chevron osteotomy for hallux valgus. Foot and Ankle 1992; 13(7): 378–381.
Google Scholar | SAGE Journals18. Favre, P, Farine, M, Snedeker, JG, et al. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus. Clin Biomechanics (Bristol, Avon) 2010; 25(7): 721–727.
Google Scholar | Crossref | Medline19. Trost, M, Bredow, J, Boese, CK, et al. Biomechanical comparison of fixation with a single screw versus two kirschner wires in distal chevron osteotomies of the first metatarsal: a cadaver study. J Foot Ankle Surg Off Pub Am Coll Foot Ankle Surg 2018; 57(1): 95–99.
Google Scholar | Crossref | Medline20. Jacob, HA . Forces acting in the forefoot during normal gait--an estimate. Clin Biomechanics (Bristol, Avon) 2001; 16(9): 783–792.
Google Scholar | Crossref | Medline | ISI21. Unal, AM, Baran, O, Uzun, B, et al. Comparison of screw-fixation stabilities of first metatarsal shaft osteotomies: a biomechanical study. Acta Orthopaedica Et Traumatologica Turcica 2010; 44(1): 70–75.
Google Scholar | Crossref | Medline | ISI22. Wagner, FC, Post, A, Yilmaz, T, et al. Biomechanical comparison of biodegradable magnesium screws and titanium screws for operative stabilization of displaced capitellar fractures. J Shoulder Elbow Surg 2020; 29(9): 1912–1919.
Google Scholar | Crossref | Medline23. Sumitomo, N, Noritake, K, Hattori, T, et al. Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation of tibia fracture model in rabbit. J Mat Sci Mater Med 2008; 19(4): 1581–1586.
Google Scholar | Crossref | Medline24. Staiger, MP, Pietak, AM, Huadmai, J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27(9): 1728–1734.
Google Scholar | Crossref | Medline | ISI25. Böstman, OM, Päivärinta, U, Partio, E, et al. The tissue-implant interface during degradation of absorbable polyglycolide fracture fixation screws in the rabbit femur. Clin Orthopaedics Related Research 1992; 285: 263–272.
Google Scholar26. Yukata, K, Doi, K, Hattori, Y, et al. Early breakage of a titanium volar locking plate for fixation of a distal radius fracture: case report. J Hand Surg 2009; 34(5): 907–909.
Google Scholar | Crossref | Medline27. Banovetz, JM, Sharp, R, Probe, RA, et al. Titanium plate fixation: a review of implant failures. J Orthopaedic Trauma 1996; 10(6): 389–394.
Google Scholar | Crossref | Medline28. Erdmann, N, Angrisani, N, Reifenrath, J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomaterialia 2011; 7(3): 1421–1428.
Google Scholar | Crossref | Medline29. Waizy, H, Weizbauer, A, Maibaum, M, et al. Biomechanical characterisation of a degradable magnesium-based (MgCa0.8) screw. J Mat Sci Mater Med 2012; 23(3): 649–655.
Google Scholar | Crossref | Medline30. Klauser, H . Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg: Off J Eur Soc Foot Ankle Surg 2019; 25(3): 398–405.
Google Scholar | Crossref | Medline31. Rokkanen, PU, Böstman, O, Hirvensalo, E, et al. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 2000; 21(24): 2607–2613.
Google Scholar | Crossref | Medline | ISI32. Schuh, R, Hofstaetter, JG, Benca, E, et al. Biomechanical analysis of two fixation methods for proximal chevron osteotomy of the first metatarsal. Int Orthop 2014; 38(5): 983–989.
Google Scholar | Medline33. Campbell, B, Schimoler, P, Belagaje, S, et al. Weight-bearing recommendations after first metatarsophalangeal joint arthrodesis fixation: a biomechanical comparison. J Orthop Surg Res 2017; 12(1): 23.
Google Scholar | Crossref | Medline34. Sawbones, J-TH . Biomechanical settings–a review. Osteosynthesis Trauma Care 2006; 14(4): 259–264.
Google Scholar | Crossref35. Heiner, AD . Structural properties of fourth-generation composite femurs and tibias. J Biomechanics 2008; 41(15): 3282–3284.
Google Scholar | Crossref | Medline | ISI36. Quenneville, CE, Greeley, GS, Dunning, CE. Evaluation of synthetic composite tibias for fracture testing using impact loads. Proc Inst Mech Eng H J Eng Med 2010; 224(10): 1195–1199.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif