Genotoxicity and alteration of the Gene Regulatory Network expression during Paracentrotus lividus development in the presence of carbon nanoparticles

1.

Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ (2016) Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem 35:1055–1067. https://doi.org/10.1002/etc.3385

CAS  Article  PubMed  PubMed Central  Google Scholar 

2.

Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6. https://doi.org/10.1186/s12302-018-0132-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

3.

Prajitha N, Athira SS, Mohanan PV (2019) Bio-interactions and risks of engineered nanoparticles. Environ Res 172:98–108. https://doi.org/10.1016/j.envres.2019.02.003

CAS  Article  PubMed  Google Scholar 

4.

Mahaye N, Thwala M, Cowan DA, Musee N (2017) Genotoxicity of metal based engineered nanoparticles in aquatic organisms: a review. Mutat Res 773:134–160. https://doi.org/10.1016/j.mrrev.2017.05.004

CAS  Article  PubMed  Google Scholar 

5.

Gallo A, Manfra L, Boni R, Rotini A, Migliore L, Tosti E (2018) Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Environ Int 118:325–333. https://doi.org/10.1016/j.envint.2018.05.034

CAS  Article  PubMed  Google Scholar 

6.

Xia XR, Monteiro-Riviere NA, Mathur S, Song X, Xiao L, Oldenberg SJ, Fadeel B, Riviere JE (2011) Mapping the surface adsorption forces of nanomaterials in biological systems. ACS Nano 5:9074–9081. https://doi.org/10.1021/nn203303c

CAS  Article  PubMed  PubMed Central  Google Scholar 

7.

Mesarič T, Sepčić K, Drobne D, Makovec D, Faimali M, Morgana S, Falugi C, Gambardella C (2015) Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). Aquat Toxicol 163:158–166. https://doi.org/10.1016/j.aquatox.2015.04.012

CAS  Article  PubMed  Google Scholar 

8.

Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851. https://doi.org/10.1897/08-090.1

CAS  Article  PubMed  Google Scholar 

9.

Gambardella C, Ferrando S, Morgana S, Gallus L, Ramoino P, Raverac S, Braminid M, Diaspro A, Faimali M, Falugi C (2015) Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. Aquat Toxicol 158:181–191. https://doi.org/10.1016/j.aquatox.2014.11.014

CAS  Article  PubMed  Google Scholar 

10.

Giannetto A, Cappello T, Oliva S, Parrino V, De Marco G, Fasulo S, Mauceri A, Maisano M (2018) Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos. Aquat Toxicol 201:187–197. https://doi.org/10.1016/j.aquatox.2018.06.010

CAS  Article  PubMed  Google Scholar 

11.

Canesi L, Ciacci C, Betti M, Fabbri R, Canonico B, Fantinati A, Marcomini A, Pojana G (2008) Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ Int 34:1114–1119. https://doi.org/10.1016/j.envint.2008.04.002

CAS  Article  PubMed  Google Scholar 

12.

Canesi L, Ciacci C, Vallotto D, Gallo G, Marcomini A, Pojana G (2010) In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat toxicol 96:151–158. https://doi.org/10.1016/j.aquatox.2009.10.017

CAS  Article  PubMed  Google Scholar 

13.

Canesi L, Fabbri R, Gallo G, Vallotto D, Marcomini A, Pojana G (2010) Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (nano carbon black, C60 fullerene, nano-TiO2, Nano-SiO2). Aquat Toxicol 100:168–177. https://doi.org/10.1016/j.aquatox.2010.04.009

CAS  Article  PubMed  Google Scholar 

14.

Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF (2008) Interactions between carbon black nanoparticles and the brown algae Fucus serratus: inhibition of fertilization and zygotic development. Nanotoxicol 2:88–97. https://doi.org/10.1080/17435390802109185

CAS  Article  Google Scholar 

15.

Radhika Rajasree SR, Ganesh Kumar V, Stanley Abraham L, Indabakandan D (2011) Studies on the toxicological effects of engineered nanoparticles in environment—a review. Int J Appl Bio Eng 5:35–45. https://doi.org/10.18000/ijabeg.10083

Article  Google Scholar 

16.

Miglietta ML, Rametta G, Francia GD, Manzo S, Rocco A, Carotenuto R, Picione LDF, Buono S (2011) Characterization of nanoparticles in seawater for toxicity assessment towards aquatic organisms. Sens Microsyst 91:425–429. https://doi.org/10.1007/978-94-007-1324-6_69

Article  Google Scholar 

17.

Carata E, Panzarini E, Dini L (2017) Environmental nanoremediation and electron microscopies. Nanotechnol Environ Remediat Appl Implic. https://doi.org/10.1007/978-3-319-53162-5_4

Article  Google Scholar 

18.

Carata E, Tenuzzo BA, Arnò F, Buccolieri A, Serra A, Manno D, Dini L (2012) Stress response induced by carbon nanoparticles in Paracentrotus lividus. Int J Mol Cell Med IJMCM 1:30–38

PubMed  Google Scholar 

19.

Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, Fabrizi A, Pinsino A, Matranga V (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–121. https://doi.org/10.1016/j.marenvres.2011.10.003

CAS  Article  PubMed  Google Scholar 

20.

Matranga V, Corsi I (2012) Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. Mar Environ Res 76:32–40. https://doi.org/10.1016/j.marenvres.2012.01.006

CAS  Article  PubMed  Google Scholar 

21.

Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS ONE 7:e30321. https://doi.org/10.1371/journal.pone.0030321

CAS  Article  PubMed  PubMed Central  Google Scholar 

22.

Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci Process Impacts 15:225–233. https://doi.org/10.1039/c2em30540b

CAS  Article  PubMed  Google Scholar 

23.

Manno D, Carata E, Tenuzzo BA, Panzarini E, Buccolieri A, Filippo E, Rossi M, Serra A, Dini L (2012) High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus. Nanotech 23:495104. https://doi.org/10.1088/0957-4484/23/49/495104

CAS  Article  Google Scholar 

24.

Manno D, Serra A, Buccolieri A, Panzarini E, Carata E, Tenuzzo B, Izzo D, Vergallo C, Rossi M, Dini L (2013) Silver and carbon nanoparticles toxicity in sea urchin Paracentrotus lividus embryos. BioNanoMat 14:229–238. https://doi.org/10.1515/bnm-2013-001

Article  Google Scholar 

25.

Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Rottinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T (2010) Ancestral regulatory circuits governing ectoderm patterning downstream of nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 6:e1001259. https://doi.org/10.1371/journal.pgen.1001259

CAS  Article  PubMed  PubMed Central  Google Scholar 

26.

Su YH, Li E, Geiss GK, Longabaugh WJ, Krämer A, Davidson EH (2009) A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev Biol 329:410–421. https://doi.org/10.1016/j.ydbio.2009.02.029

CAS  Article  PubMed  PubMed Central  Google Scholar 

27.

Arizzi Novelli A, Argese E, Tagliapietra D, Bettiol C, Volpi Ghirardini A (2002) Toxicity of tributylin and triphenyltil to early life-stages of Paracentrotus lividus (Echinodermata: Echinoidea). Environ Toxicol Chem 21:859–864. https://doi.org/10.1002/etc.5620210424

Article  Google Scholar 

28.

Arizzi Novelli A, Losso C, Falugi C, Giuliani S, Kozinkova L, Lera S, Leoni T, Manzo S, Mazziotti C, Pellegrini D, Picone M, Volpi Ghirardini A (2007) Il test di fecondazione con il riccio di mare Paracentrotus lividus (LMK). Biol Mar Mediterr 14:43–47

Google Scholar 

29.

Arizzi Novelli A, Losso C, Volpi Ghirardini A, Ghetti PF (2007) Saggi di tossicità con il riccio di mare Paracentrotus lividus: percorso di validazione di metodologie per gli ambienti di transizione attraverso una procedura di controllo qualità. Biol Mar Mediterr 14:100–102

Google Scholar 

30.

Oliviero M, Schiavo S, Dumontet S, Manzo S (2019) DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. Sci Total Environ 651:756–765. https://doi.org/10.1016/j.scitotenv.2018.09.243

CAS  Article  PubMed  Google Scholar 

31.

Nahon S, Charles F, Pruski AM (2008) Improved Comet assay for the assessment of UV genotoxicity in Mediterranean sea urchin eggs. Environ Mol Mutagen 49:351–359. https://doi.org/10.1002/em.20391

CAS  Article  PubMed  Google Scholar 

32.

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

CAS  Article  Google Scholar 

33.

Minokawa T, Rast JP, Arenas-Mena C, Franco CB, Davidson EH (2004) Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns. 4:449–456. https://doi.org/10.1016/j.modgep.2004.01.009

CAS  Article  PubMed  Google Scholar 

34.

Duboc V, Rottinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6:397–410. https://doi.org/10.1016/S1534-5807(04)00056-5

CAS  Article  PubMed  Google Scholar 

35.

Duboc V, Lapraz F, Besnardeau L, Lepage T (2008) Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation. Dev Biol 320:49–59. https://doi.org/10.1016/j.ydbio.2008.04.012

CAS  Article  PubMed  Google Scholar 

36.

McIntyre DC, Seay NW, Croce JC, McClay DR (2013) Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 140:4881–4889. https://doi.org/10.1242/dev.095844

CAS  Article  PubMed  PubMed Central  Google Scholar 

37.

Shashikant T, Khor JM, Ettensohn CA (2018) From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 56:e23253. https://doi.org/10.1002/dvg.23253

CAS 

留言 (0)

沒有登入
gif