Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications

1. Saitoh, HT, Tsuda, M, Inoue, K. Role of purinergic receptors in CNS function and neuroprotection. Adv Pharmacol. 2011;61:495–528. doi:10.1016/B978-0-12-385526-8.00015-1
Google Scholar | Crossref | Medline2. Bennet, DW, Drury, AN. Further observations relating to the physiological activity of adenine compounds. J Physiol. 1931;72(3):288–320.
Google Scholar | Crossref | Medline3. Burnstock, G . Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7(7):575–590. doi:10.1038/nrd2605
Google Scholar | Crossref | Medline4. Burnstock, G . Editor’s note. Purinerg Signal. 2018;14:213. doi:10.1007/s11302-018-9613-8
Google Scholar | Crossref | Medline5. Burnstock, G . Purine and purinergic receptors. Brain Neurosci Advances. 2018;2:1–10.
Google Scholar | SAGE Journals6. Beamer, E, Goloncser, F, Horvath, G, et al. Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology. 2016;104:94–104. doi:10.1016/j.neuropharm.2015.09.019
Google Scholar | Crossref | Medline7. Burnstock, G . An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology. 2016;104:4–17. doi:10.1016/j.neuropharm.2015.05.031
Google Scholar | Crossref | Medline8. Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166–176. doi:10.1016/j.tips.2006.01.005
Google Scholar | Crossref | Medline9. Bhattacharya, A, Biber, K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia 2016;64(10):1772–1787. doi:10.1002/glia.23001
Google Scholar | Crossref | Medline10. Roszek, K, Czarnecka, J. Is ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)-based therapy of central nervous system disorders possible? Mini-Rev Med Chem. 2015;15(1):5–20. doi:10.2174/1389557515666150219114416
Google Scholar | Crossref | Medline11. Yegutkin, GG . Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–694. doi:10.1016/j.bbamcr.2008.01.024
Google Scholar | Crossref | Medline | ISI12. Inoue, K . Purinergic systems in microglia. Cell Mol Life Sci. 2008;65(19):3074–3080. doi:10.1007/s00018-008-8210-3
Google Scholar | Crossref | Medline13. Domercq, M, Villoldo, NV, Matute, C. Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci. 2013;7:49. doi:10.3389/fncel.2013.00049
Google Scholar | Medline14. Ulmann, L, Hatcher, JP, Hughes, JP, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J neurosci. 2008;28(44):11263–11268. doi:10.1523/JNEUROSCI.2308-08.2008
Google Scholar | Crossref | Medline | ISI15. Di Virgilio, F, Dal Ben, D, Sarti, AC, Giuliani, AL, Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity. 2017;47(1):15–31. doi:10.1016/j.immuni.2017.06.020
Google Scholar | Crossref | Medline16. Haynes, SE, Hollopeter, G, Yang, G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–1519. doi:10.1038/nn1805
Google Scholar | Crossref | Medline17. Villoldo, NV, Domercq, M, Martin, A, Llop, J, Vallejo, VG, Matute, C. P2X4 receptors control the fate and survival of activated microglia. Glia. 2014;62(2):171–184. doi:10.1002/glia.22596
Google Scholar | Crossref | Medline18. Burnstock, G . Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87(2):659–797. doi:10.1152/physrev.00043.2006
Google Scholar | Crossref | Medline | ISI19. Grabot, EB, Pankratov, Y. Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X Receptors. Neural Plast. 2017;2017:9454275. doi:10.1155/2017/9454275
Google Scholar | Medline20. Braun, N, Sevigny, J, Robson, SC, et al. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur j neurosci. 2000;12(12):4357–4366.
Google Scholar | Crossref | Medline21. Fredholm, BB, IJzerman, AP IJ, Jacobson, KA, Klotz, KN, Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–552.
Google Scholar | Medline | ISI22. Choi, IS, Cho, JH, Lee, MG, Jang, IS. Enzymatic conversion of ATP to adenosine contributes to ATP-induced inhibition of glutamate release in rat medullary dorsal horn neurons. Neuropharmacology. 2015;93:94–102. doi:10.1016/j.neuropharm.2015.01.020
Google Scholar | Crossref | Medline | ISI23. Jacobson, KA, Muller, CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016;104:31–49. doi:10.1016/j.neuropharm.2015.12.001
Google Scholar | Crossref | Medline | ISI24. Narayanaswami, V, Dahl, K, Gauthier, VB, Josephson, L, Cumming, P, Vasdev, N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317. doi:10.1177/1536012118792317
Google Scholar | SAGE Journals | ISI25. Vuorimaa, A, Rissanen, E, Airas, L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease. Contrast Media Mol Imaging. 2017;2017:6975841. doi:10.1155/2017/6975841
Google Scholar | Crossref | Medline26. Boison, D . Adenosine as a modulator of brain activity. Drug News Perspect. 2007;20(10):607–611. doi:10.1358/dnp.2007.20.10.1181353
Google Scholar | Crossref | Medline27. Schmidt, J, Ferk, P. Safety issues of compounds acting on adenosinergic signalling. J Pharm Pharmacol. 2017;69(7):790–806. doi:10.1111/jphp.12720
Google Scholar | Crossref | Medline28. Sebastiao, AM, Ribeiro, JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21:341–346.
Google Scholar | Crossref | Medline | ISI29. de Mendoncca, A, Ribeiro, JA. Adenosine and synaptic plasticity. Drug Dev Res. 2001;52:283–290. doi:10.1002/ddr.1125
Google Scholar | Crossref30. Sebastiao, AM, Ribeiro, JA. Adenosine receptors and the central nervous system. Handb Exp Pharmacol. 2009;193:471–534. doi:10.1007/978-3-540-89615-9_16
Google Scholar | Crossref31. Stone, TW, Ceruti, S, Abbracchio, MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol. 2009;(193):535–587. doi:10.1007/978-3-540-89615-9_17
Google Scholar | Crossref32. Costenla, AR, Cunha, RA, de Mendonca, A. Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis. 2010;20(suppl 1):S25–S34. doi:10.3233/JAD-2010-091384
Google Scholar | Crossref | Medline33. Costenla, AR, Diogenes, MJ, Canas, PM, et al. Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci. 2011;34(1):12–21. doi:10.1111/j.1460-9568.2011.07719.x
Google Scholar | Crossref | Medline34. Leon Navarro, DA, Albasanz, JL, Martin, M. Functional cross-talk between adenosine and metabotropic glutamate receptors. Curr Neuropharmacol. 2019;17(5):422–437. doi:10.2174/1570159X16666180416093717
Google Scholar | Crossref | Medline35. Nakanishi, S . Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258(5082):597–603.
Google Scholar | Crossref | Medline36. Burnstock, G . Purinergic signalling and neurological diseases: an update. CNS Neurol Disord Drug Targets. 2017;16:257–265. doi:10.2174/1871527315666160922104848
Google Scholar | Crossref | Medline37. Lewis, MH, Primiani, C, Muehlmann, AM. Targeting dopamine D2, adenosine A2A, and glutamate mGlu5 receptors to reduce repetitive behaviors in deer mice. J Pharmacol Exp Ther. 2019;369(1):88–97. doi:10.1124/jpet.118.256081
Google Scholar | Crossref | Medline38. Ciruela, F, Soler, MG, Guidolin, D, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta. 2011;1808(5):1245–1255. doi:10.1016/j.bbamem.2011.02.007
Google Scholar | Crossref | Medline39. Piomelli, D, Pilon, C, Giros, B, Sokoloff, P, Martres, MP, Schwartz, JC. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature. 1991;353(6340):164–167. doi:10.1038/353164a0
Google Scholar | Crossref | Medline | ISI40. Krugel, U, Koles, L, Illes, P. Integration of neuronal and glial signalling by pyramidal cells of the rat prefrontal cortex; control of cognitive functions and addictive behaviour by purinergic mechanisms. Neuropsychopharmacol Hung. 2013;15(4):206–213.
Google Scholar | Medline41. Burnstock, G . Introduction to purinergic signalling in the brain. Adv Exp Med Biol. 2013;986:1–12. doi:10.1007/978-94-007-4719-7_1
Google Scholar | Crossref | Medline | ISI42. Koles, L, Kato, E, Hanuska, A, et al. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal. 2016;12(1):1–24. doi:10.1007/s11302-015-9480-5
Google Scholar | Crossref | Medline43. Delic, J, Zimmermann, H. Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal. 2010;6(4):417–428. doi:10.1007/s11302-010-9206-7
Google Scholar | Crossref | Medline44. Hempel, C, Norenberg, W, Sobottka, H, et al. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology. 2013;75:365–379. doi:10.1016/j.neuropharm.2013.07.027
Google Scholar | Crossref | Medline45. Othman, T, Legare, D, Sadri, P, Lautt, WW, Parkinson, FE. A preliminary investigation of the effects of maternal ethanol intake during gestation and lactation on brain adenosine A(1) receptor expression in rat offspring. Neurotoxicol Teratol. 2002;24(2):275–279
Google Scholar | Crossref | Medline46. Burnstock, G, Krugel, U, Abbracchio, MP, Illes, P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011;95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006
Google Scholar | Crossref | Medline | ISI47. Aliagas, E, Menendez, IV, Sevigny, J, et al. Reduced striatal ecto-nucleotidase activity in schizophrenia patients supports the “adenosine hypothesis”. Purinergic Signal. 2013;9(4):599–608. doi:10.1007/s11302-013-9370-7
Google Scholar | Crossref | Medline48. Rebola, N, Oliveira, CR, Cunha, RA. Transducing system operated by adenosine A(2A) receptors to facilitate acetylcholine release in the rat hippocampus. Eur J Pharmacol. 2002;454(1):31–38 .
Google Scholar | Crossref | Medline49. Brown, RM, Short, JL. Adenosine A(2A) receptors and their role in drug addiction. J Pharm Pharmacol. 2008;60(11):1409–1430. doi:10.1211/jpp/60.11.0001
Google Scholar | Crossref | Medline50. Salem, A, Hope, W. Role of endogenous adenosine in the expression of opiate withdrawal in rats. Eur J Pharmacol. 1999;369(1):39–42 .
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif