Radionuclide Imaging for Neuroscience: Current Opinion and Future Directions

1. Bernard-Gauthier, V, Collier, TL, Liang, SH, Vasdev, N. Discovery of PET radiopharmaceuticals at the academia-industry interface. Drug Discov Today Technol. 2017;25:19–26.
Google Scholar | Crossref | Medline2. Patching, S . Roles of facilitative glucose transporter GLUT1 in [18F]FDG positron emission tomography (PET) imaging of human diseases. J Diagnostic Imaging Ther. 2015;2(1):30–102.
Google Scholar | Crossref3. Siepel, FJ, Rongve, A, Buter, TC, et al. (123I)FP-CIT SPECT in suspected dementia with Lewy bodies: a longitudinal case study. BMJ Open. 2013;3(4):e002642.
Google Scholar | Crossref | Medline4. Imran, MB, Kawashima, R, Awata, S, et al. Parametric mapping of cerebral blood flow deficits in Alzheimer’s disease: a SPECT study using HMPAO and image standardization technique. J Nucl Med. 1999;40(2):244–249.
Google Scholar | Medline5. Jack, CR, Bennett, DA, Blennow, K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–562.
Google Scholar | Crossref | Medline6. Rinne, JO, Brooks, DJ, Rossor, MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9(4):363–372.
Google Scholar | Crossref | Medline | ISI7. Piel, M, Vernaleken, I, Rösch, F. Positron emission tomography in CNS drug discovery and drug monitoring. J Med Chem. 2014;57(22):9232–958.
Google Scholar | Crossref | Medline8. Van De Bittner, GC, Ricq, EL, Hooker, JM. A philosophy for CNS radiotracer design. Acc Chem Res. 2014;47(10):3127–3134.
Google Scholar | Crossref | Medline | ISI9. Gee, AD, Bongarzone, S, Wilson, AA. Small molecules as radiopharmaceutical vectors. In: Lewis, J, Zeglis, BM, Windhorst, AD, eds. Radiopharmaceutical Chemistry. Springer Nature; 2019: 119–36.
Google Scholar | Crossref10. Kirk, KL . Fluorination in medical chemistry: methods, strategies, and recent development. Org Process Res Dev. 2008;12(2):305–321.
Google Scholar | Crossref11. Chirakal, R, Vasdev, N, Asselin, MC, Schrobilgen, GJ, Nahmias, C. The effect of aromatic fluorine substitution in L-DOPA on the in vivo behaviour of [18F]2-, [18F]5- and [18F]6-fluoro-L-DOPA in the human brain. J Fluor Chem. 2002;115(1):33–39.
Google Scholar | Crossref12. Pike, VW . PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci. 2009;30(8):431–440.
Google Scholar | Crossref | Medline | ISI13. Liang, SH, Vasdev, N. Total radiosynthesis: thinking outside “the box. Aust J Chem. 2015;68(9):1319–1328.
Google Scholar | Crossref | Medline14. Mossine, AV., Tanzey, SS, Brooks, AF, et al. Synthesis of high-molar-activity [18F]6-fluoro-l-DOPA suitable for human use via Cu-mediated fluorination of a BPin precursor. Nat Protoc. 2020;15:1742–1759.
Google Scholar | Crossref | Medline15. Liang, SH, Wang, L, Stephenson, NA, Rotstein, BH, Vasdev, N. Facile18 F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR 5 PET radiopharmaceutical [18F]FPEB. Nat Protoc. 2019;14:1530–1545.
Google Scholar | Crossref | Medline16. Långström, B, Itsenko, O, Rahman, O. [11C] Carbon monoxide, a versatile and useful precursor in labelling chemistry for PET-ligand development. J Label Compd Radiopharm. 2007;50(9–10):794–810.
Google Scholar | Crossref17. Rotstein, BH, Liang, SH, Placzek, MS, et al. 11CO bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev. 2016;45(17):4708–4726.
Google Scholar | Crossref | Medline18. Herth, MM, Leth-Petersen, S, Lehel, S, et al. Accelerating preclinical PET-screening: Reductive amination with [11C]methoxybenzaldehydes. RSC Adv. 2014;4(41):21347–50.
Google Scholar | Crossref19. Tampio L’Estrade, E, Xiong, M, Shalgunov, V, et al. Development and evaluation of two potential 5-HT7 receptor PET tracers: [18F]ENL09 and [18F]ENL10. ACS Chem Neurosci. 2019;10(9):3961–3968.
Google Scholar | Crossref | Medline20. Gagnon, MKJ, Hausner, SH, Marik, J, Abbey, CK, Marshall, JF, Sutcliffe, JL. High-throughput in vivo screening of targeted molecular imaging agents. Proc Natl Acad Sci U S A. 2009;106(42):17904–7909.
Google Scholar | Crossref | Medline21. Berg, E, Zhang, X, Bec, J, et al. Development and evaluation of mini-EXPLORER: a long axial field-of-view PET scanner for nonhuman primate imaging. J Nucl Med. 2018;59(6):993–008.
Google Scholar | Crossref | Medline22. Badawi, RD, Shi, H, Hu, P, et al. First human imaging studies with the explorer total-body PET scanner. J Nucl Med. 2019;60(3):299–303.
Google Scholar | Crossref | Medline23. Cherry, SR, Jones, T, Karp, JS: et al. Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.
Google Scholar | Crossref | Medline24. Cherry, SR, Badawi, RD, Karp, JS, Moses, WW, Price, P, Jones, T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.
Google Scholar | Crossref | Medline25. Gee, AD, Andersson, J, Bhalla, R, et al. Training the next generation of radiopharmaceutical scientists. Nucl Med Biol. 2020;Accepted manuscript in press.
Google Scholar | Crossref

留言 (0)

沒有登入
gif