Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging

1. Brähler, M, Georgieva, R, Buske, N, et al. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett. 2006;6(11):2505–2509.
Google Scholar | Crossref | Medline2. Yan, L, Amirshaghaghi, A, Huang, D, et al. Protoporphyrin IX (PpIX)-coated superparamagnetic iron oxide nanoparticle (SPION) nanoclusters for magnetic resonance imaging and photodynamic therapy. Adv Funct Mater. 2018;28(16):1707030.
Google Scholar | Crossref | Medline3. Qin, J, Laurent, S, Jo, YS, et al. A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater. 2007;19(14):1874–1878.
Google Scholar | Crossref4. O’handley, RC . Modern Magnetic Materials: Principles and Applications. Wiley; 2000.
Google Scholar5. Sabnis, S, Sabnis, NA, Raut, S, Lacko, AG. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. Int J Nanomed. 2017;12:1453–1464.
Google Scholar | Crossref | Medline6. Santhosh, PB, Ulrih, NP. Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett. 2013;336(1):8–17.
Google Scholar | Crossref | Medline7. Dadfar, SM, Roemhild, K, Drude, NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–325.
Google Scholar | Crossref | Medline8. Torchilin, VP . Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–827.
Google Scholar | Crossref | Medline9. Zhuang, M, Du, D, Pu, L, et al. SPION-decorated exosome delivered BAY55-9837 targeting the pancreas through magnetism to improve the blood GLC response. Small. 2019;15(52):1903135.
Google Scholar | Crossref10. Miranda, MS, Miranda, MS, Domingues, RMA, et al. Development of inhalable superparamagnetic iron oxide nanoparticles (spions) in microparticulate system for antituberculosis drug delivery. Adv Healthc Mater. 2018;7(15):1800124.
Google Scholar | Crossref11. Hayashi, K, Nakamura, M, Sakamoto, W, et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013;3(6):366.
Google Scholar | Crossref | Medline12. Grootendorst, DJ, Jose, J, Fratila, RM, et al. Evaluation of superparamagnetic iron oxide nanoparticles (Endorem®) as a photoacoustic contrast agent for intra-operative nodal staging. Contrast Media Mol Imaging. 2013;8(11):83–91.
Google Scholar | Crossref | Medline13. Clement, JH, Schwalbe, M, Buske, N, et al. Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells. J Cancer Res Clin Oncol. 2006;132(5):287–292.
Google Scholar | Crossref | Medline14. Chen, O, Riedemann, L, Etoc, F, et al. Magneto-fluorescent core-shell supernanoparticles. Nat Commun. 2014;5:1–8.
Google Scholar | Crossref15. Pahari, SK, Olszakier, S, Kahn, I, Amirav, L. Magneto-fluorescent yolk–shell nanoparticles. Chem Mater. 2018;30(3):775–780.
Google Scholar | Crossref16. Ge, J, Hu, Y, Zhang, T, Yin, Y. Superparamagnetic composite colloids with anisotropic structures. J Am Chem Soc. 2007;129(29):8974–8975.
Google Scholar | Crossref | Medline17. Li, K, Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43(18):6570–6597.
Google Scholar | Crossref | Medline18. Tiwari, A, Kumar, R, Shefi, O, Randhawa, JK. Fluorescent mantle carbon coated core–shell SPIONS for neuroengineering applications. ACS Appl Bio Mater. 2020;3(7):4665–4673.
Google Scholar | Crossref19. Chen, YS, Hung, YC, Liau, I, Huang, GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4:858.
Google Scholar | Crossref | Medline20. Bhavesh, R, Lechuga-Vieco, AV, Ruiz-Cabello, J, Herranz, F. T1-MRI fluorescent iron oxide nanoparticles by microwave assisted synthesis. Nanomaterials. 2015;5(4):1880–1890.
Google Scholar | Crossref | Medline21. Cai, J, Dao, P, Chen, H, et al. Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: novel theranostic agents for Alzheimer’s disease. Dye Pigment. 2020;173:107968.
Google Scholar | Crossref22. Jayapaul, J, Hodenius, M, Arns, S, et al. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells. Biomaterials. 2011;32(25):5863–5871.
Google Scholar | Crossref | Medline23. Wang, H, Shen, J, Li, Y, et al. Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomater Sci. 2014;2(6):915–923.
Google Scholar | Crossref | Medline24. Tian, L, Ghosh, D, Chen, W, Pradhan, S, Chang, X, Chen, S. Nanosized carbon particles from natural gas soot. Chem Mater. 2009;21(13):2803–2809.
Google Scholar | Crossref25. Wang, X, Liu, Y, Arandiyan, H, et al. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Appl Surf Sci. 2016;389:240–246.
Google Scholar | Crossref26. Verma, NC, Yadav, A, Nandi, CK. Paving the path to the future of carbogenic nanodots. Nat Commun. 2019;10(1):2391.
Google Scholar | Crossref | Medline27. Oliveira, LC, Rios, RV, Fabris, JD, Garg, V, Sapag, K, Lago, RM. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon N Y. 2002;40(12):2177–2183.
Google Scholar | Crossref28. Tiwari, A, Verma, NC, Singh, A, Nandi, CK, Randhawa, JK. Carbon coated core–shell multifunctional fluorescent SPIONs. Nanoscale. 2018;10(22):10389–10394.
Google Scholar | Crossref | Medline29. Wahajuddin, SA . Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. 2012;7:3445.
Google Scholar | Crossref | Medline30. Krycka, KL, Borchers, JA, Booth, RA, et al. Origin of surface canting within Fe 3 O 4 nanoparticles. Phys Rev Lett. 2014;113:147203.
Google Scholar | Crossref | Medline31. Kim, BH, Lee, N, Kim, H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133(32):12624–12631.
Google Scholar | Crossref | Medline32. Dulińska-Litewka, J, Łazarczyk, A, Hałubiec, P, Szafrański, O, Karnas, K, Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials (Basel). 2019;12(4):617.
Google Scholar | Crossref33. Marolt, M, Jaglicic, Z. Superparamagnetic materials. Semin Mestrado, Univ; 2014.
Google Scholar34. Sung, HWF, Rudowicz, C. A closer look at the hysteresis loop for ferromagnets - A survey of misconceptions and misinterpretations in textbooks. arXiv Prepr. cond-mat/0210657; 2002.
Google Scholar35. Rumpf, K, Granitzer, P, Morales, PM, Poelt, P, Reissner, M. Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Res Lett. 2012;7:445.
Google Scholar | Crossref | Medline36. Knobel, M, Nunes, WC, Socolovsky, LM, De Biasi, E, Vargas, JM, Denardin, JC. Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol. 2008;8(6):2836–2857.
Google Scholar | Crossref | Medline37. Pereira, GF, Costa, FN, Souza, JA, Haddad, PS, Ferreira, FF. Parametric rietveld refinement and magnetic characterization of superparamagnetic iron oxide nanoparticles. J Magn Magn Mater. 2018;456:108–117.
Google Scholar | Crossref38. Sun, YP, Zhou, B, Lin, Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757.
Google Scholar | Crossref | Medline39. Sharma, A, Gadly, T, Gupta, A, Ballal, A, Ghosh, SK, Kumbhakar, M. Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett. 2016;7(18):3695–3702.
Google Scholar | Crossref | Medline40. Verma, NC, Rao, C, Singh, A, Garg, N, Nandi, CK. Dual responsive specifically labelled carbogenic fluorescent nanodots for super resolution and electron microscopy. Nanoscale. 2019:11(14):6561–6565.
Google Scholar | Crossref | Medline41. Verma, NC, Rao, C, Nandi, CK. Nitrogen-doped biocompatible carbon dot as a fluorescent probe for STORM nanoscopy. J Phys Chem C. 2018;122(8):4704–4709.
Google Scholar | Crossref

留言 (0)

沒有登入
gif