[11C]Methionine and [11C]PBR28 as PET Imaging Tracers to Differentiate Metastatic Tumor Recurrence or Radiation Necrosis

1. Miyatake, S, Nonoguchi, N, Furuse, M, et al. Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain. Neurol Med Chir (Tokyo). 2015;55(1):50–59. doi:10.2176/nmc.ra.2014-0188
Google Scholar | Crossref2. Vellayappan, B, Tan, CL, Yong, C, et al. Diagnosis and management of radiation necrosis in patients with brain metastases. Front Oncol. 2018;8:395. doi:10.3389/fonc.2018.00395
Google Scholar | Crossref | Medline3. Gotz, I, Grosu, AL. [(18)F]FET-PET imaging for treatment and response monitoring of radiation therapy in malignant glioma patients—a review. Front Oncol. 2013;3:104. doi:10.3389/fonc.2013.00104
Google Scholar | Crossref | Medline4. Sogani, SK, Jena, A, Taneja, S, et al. Potential for differentiation of glioma recurrence from radionecrosis using integrated (18)F-fluoroethyl-L-tyrosine (FET) positron emission tomography/magnetic resonance imaging: a prospective evaluation. Neurol India. 2017;65(2):293–301. doi:10.4103/neuroindia.NI_101_16
Google Scholar | Crossref | Medline5. Piroth, MD, Liebenstund, S, Galldiks, N, et al. Monitoring of radiochemotherapy in patients with glioblastoma using O-(2-(1)(8)Fluoroethyl)-L-tyrosine positron emission tomography: is dynamic imaging helpful? Mol Imaging. 2013;12(6):388–395.
Google Scholar | SAGE Journals6. Lohmann, P, Kocher, M, Ceccon, G, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin. 2018;20:537–542. doi:10.1016/j.nicl.2018.08.024
Google Scholar | Crossref | Medline7. Zikou, A, Sioka, C, Alexiou, GA, et al. Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging. 2018;2018:6828396. /01/11. doi:10.1155/2018/6828396
Google Scholar | Crossref | Medline8. Glaudemans, AW, Enting, RH, Heesters, MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–635. doi:10.1007/s00259-012-2295-5
Google Scholar | Crossref | Medline | ISI9. Yomo, S, Oguchi, K. Prospective study of (11)C-methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC Cancer. 2017;17(1):713. doi:10.1186/s12885-017-3702-x
Google Scholar | Crossref | Medline10. Garcia, JR, Cozar, M, Baquero, M, et al. The value of (11)C-methionine PET in the early differentiation between tumour recurrence and radionecrosis in patients treated for a high-grade glioma and indeterminate MRI. Rev Esp Med Nucl Imagen Mol. 2017;36(2):85–90. doi:10.1016/j.remn.2016.06.002
Google Scholar | Crossref | Medline11. Deng, SM, Zhang, B, Wu, YW, et al. Detection of glioma recurrence by (1)(1)C-methionine positron emission tomography and dynamic susceptibility contrast-enhanced magnetic resonance imaging: a meta-analysis. Nucl Med Commun. 2013;34(8):758–766. doi:10.1097/MNM.0b013e328361f598
Google Scholar | Crossref | Medline | ISI12. Nihashi, T, Dahabreh, IJ, Terasawa, T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34(5):944–950 , S941-911. doi:10.3174/ajnr.A3324
Google Scholar | Crossref | Medline | ISI13. Law, I, Albert, NL, Arbizu, J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–557. doi:10.1007/s00259-018-4207-9
Google Scholar | Crossref | Medline14. Werry, EL, Bright, FM, Piguet, O, et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int J Mol Sci. 2019;20(13):3161. doi:10.3390/ijms20133161
Google Scholar | Crossref15. Ruksha, T, Aksenenko, M, Papadopoulos, V. Role of translocator protein in melanoma growth and progression. Arch Dermatol Res. 2012;304(10):839–845. doi:10.1007/s00403-012-1294-5
Google Scholar | Crossref | Medline16. Han, Z, Slack, RS, Li, W, Papadopoulos, V. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression. J Recept Signal Transduct Res. 2003;23(2-3):225–238. doi:10.1081/RRS-120025210
Google Scholar | Crossref | Medline17. Lumniczky, K, Szatmari, T, Safrany, G. Ionizing radiation-induced immune and inflammatory reactions in the brain. Front Immunol. 2017;8:517. doi:10.3389/fimmu.2017.00517
Google Scholar | Crossref | Medline18. Cuccurullo, V, Di Stasio, GD, Cascini, GL, et al. The molecular effects of ionizing radiations on brain cells: radiation necrosis vs. tumor recurrence. Diagnostics (Basel). 2019;9(4):127. doi:10.3390/diagnostics9040127
Google Scholar | Crossref19. Chen, MK, Guilarte, TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther. 2008;118(1):1–17. doi:10.1016/j.pharmthera.2007.12.004
Google Scholar | Crossref | Medline | ISI20. Alomari, A, Rauch, PJ, Orsaria, M, et al. Radiologic and histologic consequences of radiosurgery for brain tumors. J Neurooncol. 2014;117(1):33–42. doi:10.1007/s11060-014-1359-8
Google Scholar | Crossref | Medline21. Kreisl, WC, Fujita, M, Fujimura, Y, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. NeuroImage. 2010;49(4):2924–2932. doi:10.1016/j.neuroimage.2009.11.056
Google Scholar | Crossref | Medline22. Deloar, HM, Fujiwara, T, Nakamura, T, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med. 1998;25(6):629–633.
Google Scholar | Crossref | Medline23. Brown, AK, Fujita, M, Fujimura, Y, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007;48(12):2072–2079. doi:10.2967/jnumed.107.044842
Google Scholar | Crossref | Medline24. Jin, X, Mulnix, T, Gallezot, JD, Carson, RE. Evaluation of motion correction methods in human brain PET imaging—a simulation study based on human motion data. Med Phys. 2013;40(10):10250 3. doi:10.1118/1.4819820
Google Scholar | Crossref25. Carson, RE, Barker, W, Liow, J-S, et al. Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction of the HRRT. IEEE Nucl Sci Symp Conf Rec. 2003; M16–6.
Google Scholar26. Patlak, CS, Blasberg, RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–590. doi:10.1038/jcbfm.1985.87
Google Scholar | SAGE Journals | ISI27. Patlak, CS, Blasberg, RG, Fenstermacher, JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7. doi: 10.1038/jcbfm.1983.1
Google Scholar | SAGE Journals | ISI28. Ichise, M, Toyama, H, Innis, RB, Carson, RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22(10):1271–1281. doi:10.1097/00004647-200210000-00015
Google Scholar | SAGE Journals | ISI29. Ichise, M, Liow, J-S, Lu, J-Q, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. 2003;23(9):1096–1112. doi:10.1097/01.WCB.0000085441.37552.CA
Google Scholar | SAGE Journals | ISI30. Camp, RL, Chung, GG, Rimm, DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med. 2002;8(11):1323–1327. doi:10.1038/nm791
Google Scholar | Crossref | Medline | ISI31. Owen, DR, Yeo, AJ, Gunn, RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5. doi:10.1038/jcbfm.2011.147
Google Scholar | SAGE Journals | ISI32. Bhoola, NH, Mbita, Z, Hull, R, Dlamini, Z. Translocator protein (TSPO) as a potential biomarker in human cancers. Int J Mol Sci. 2018;19(8):2176. doi:10.3390/ijms19082176
Google Scholar | Crossref33. Donabedian, PL, Kossatz, S, Engelbach, JA, et al. Discriminating radiation injury from recurrent tumor with [(18)F]PARPi and amino acid PET in mouse models. EJNMMI Res. 2018;8(1):59. doi:10.1186/s13550-018-0399-z
Google Scholar | Crossref | Medline34. Furumoto, S, Shinbo, R, Iwata, R, et al. In vitro and in vivo characterization of 2-deoxy-2-18F-fluoro-D-mannose as a tumor-imaging agent for PET. J Nucl Med. 2013;54(8):1354–1361. doi:10.2967/jnumed.112.113571
Google Scholar | Crossref | Medline35. Tjuvajev, JG, Macapinlac, HA, Daghighian, F, et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. J Nucl Med. 1994;35(9):1407–1417.
Google Scholar | Medline36. Liu, Y, Carpenter, AB, Pirozzi, CJ, et al. Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology. 2019;30(27):275101. doi:10.1088/1361-6528/ab0e9c
Google Scholar | Crossref | Medline37. Weber, W, Bartenstein, P, Gross, MW, et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med. 1997;38(5):802–808.
Google Scholar | Medline

留言 (0)

沒有登入
gif