High-Efficiency Production of Radiopharmaceuticals via Droplet Radiochemistry: A Review of Recent Progress

1. Phelps, ME . Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A. 2000;97(16):9226–9233.
Google Scholar | Crossref | Medline | ISI2. Hargreaves, R . The role of molecular imaging in drug discovery and development. Clin Pharmacol Ther. 2008;83(2):349–353.
Google Scholar | Crossref | Medline3. Glaudemans, AWJM, de Vries, EFJ, Galli, F, Dierckx, RA, Slart, RH, Signore, A. The use of 18F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013;2013:1–14.
Google Scholar | Crossref4. Avril, S, Muzic, RF, Plecha, D, Traughber, BJ, Vinayak, S, Avril, N. 18F-FDG PET/CT for monitoring of treatment response in breast cancer. J Nucl Med. 2016;57(Suppl 1):34S–39S.
Google Scholar | Crossref | Medline5. Kulkarni, HR, Singh, A, Langbein, T, et al. Theranostics of prostate cancer: from molecular imaging to precision molecular radiotherapy targeting the prostate specific membrane antigen. Br J Radiol. 2018;91(1091):20180308.
Google Scholar | Crossref | Medline6. Velikyan, I . Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics. 2012;2(5):424–426.
Google Scholar | Crossref | Medline7. Rensch, C, Jackson, A, Lindner, S, et al. Microfluidics: a groundbreaking technology for PET tracer production? Molecules. 2013;18(7):7930–7956.
Google Scholar | Crossref | Medline8. Knapp, K-A, Nickels, ML, Manning, HC. The current role of microfluidics in radiofluorination chemistry. Mol Imaging Biol. 2020;22(3):463–475.
Google Scholar | Crossref | Medline9. Razzaq, T, Kappe, CO. Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J. 2010;5(6):1274–1289.
Google Scholar | Medline10. Wiles, C, Watts, P. Continuous flow reactors, a tool for the modern synthetic chemist. Eur J Org Chem. 2008;2008(10):1655–1671.
Google Scholar | Crossref11. Arima, V, Watts, P, Pascali, G. Microfluidics in planar microchannels: synthesis of chemical compounds on-chip. In: Castillo-León, J, Svendsen, WE, eds. Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer International Publishing; 2014:197–239.
Google Scholar12. Pascali, G, Watts, P, Salvadori, PA. Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol. 2013;40(6):776–787.
Google Scholar | Crossref | Medline13. Zeng, D, Desai, AV, Ranganathan, D, et al. Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol. 2013;40(1):42–51.
Google Scholar | Crossref | Medline14. Wright, BD, Whittenberg, J, Desai, A, et al. Microfluidic preparation of a 89Zr-labeled trastuzumab single-patient dose. J Nucl Med. 2016;57(5):747–752.
Google Scholar | Crossref | Medline15. Pfaff, S, Philippe, C, Pichler, V, Hacker, M, Mitterhauser, M, Wadsak, W. Microfluidic 68 Ga-labeling: a proof of principle study. Dalton Trans. 2018;47(17):5997–6004.
Google Scholar | Crossref | Medline16. Liu, Z, Schaap, KS, Ballemans, L, et al. Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system. Dalton Trans. 2017;46(42):14669–14676.
Google Scholar | Crossref | Medline17. De Leonardis, F, Pascali, G, Salvadori, PA, Watts, P, Pamme, N. On-chip pre-concentration and complexation of [18F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of positron emission tomography tracers. J Chromatogr A. 2011;1218(29):4714–4719.
Google Scholar | Crossref | Medline18. Sadeghi, S, Liang, V, Cheung, S, et al. Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers. Appl Radiat Isot. 2013;75:85–94.
Google Scholar | Crossref | Medline19. Arima, V, Pascali, G, Lade, O, et al. Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab Chip. 2013;13(12):2328–2336.
Google Scholar | Crossref | Medline20. Tarn, MD, Pascali, G, De Leonardis, F, Watts, P, Salvadori, PA, Pamme, N. Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. J Chromatogr A. 2013;1280:117–121.
Google Scholar | Crossref | Medline21. Saiki, H, Iwata, R, Nakanishi, H, et al. Electrochemical concentration of no-carrier-added [18F]fluoride from [18O]water in a disposable microfluidic cell for radiosynthesis of 18F-labeled radiopharmaceuticals. Appl Radiat Isot. 2010;68(9):1703–1708.
Google Scholar | Crossref | Medline22. Wong, R, Iwata, R, Saiki, H, Furumoto, S, Ishikawa, Y, Ozeki, E. Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds. Appl Radiat Isot. 2012;70(1):193–199.
Google Scholar | Crossref | Medline23. Lee, C-C, Sui, G, Elizarov, A, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science. 2005;310(5755):1793–1796.
Google Scholar | Crossref | Medline24. Chen, S, Lei, J, van Dam, RM, et al. Planar alumina purification of 18F-labeled radiotracer synthesis on EWOD chip for positron emission tomography (PET). In: Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2012:1771–1773.
Google Scholar25. Chen, S, Dooraghi, A, Lazari, M, et al. On-chip product purification for complete microfluidic radiotracer synthesis. In: Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). San Francisco, CA. January 26-30, 2014:284–287.
Google Scholar | Crossref26. Zhang, X, Liu, F, Knapp, K-A, Nickels, ML, Manning, HC, Bellan, LM. A simple microfluidic platform for rapid and efficient production of the radiotracer [18F]fallypride. Lab Chip. 2018;18(9):1369–1377.
Google Scholar | Crossref | Medline27. Keng, PY, Sergeev, M, van Dam, RM. Advantages of radiochemistry in microliter volumes. In: Kuge, Y, Shiga, T, Tamaki, N, eds. Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy. Springer Japan; 2016:93–111.
Google Scholar | Crossref28. Lisova, K, Sergeev, M, Evans-Axelsson, S, et al. Microscale radiosynthesis, preclinical imaging and dosimetry study of [18F]AMBF3-TATE: a potential PET tracer for clinical imaging of somatostatin receptors. Nucl Med Biol. 2018;61:36–44.
Google Scholar | Crossref | Medline29. Rensch, C, Lindner, S, Salvamoser, R, et al. A solvent resistant lab-on-chip platform for radiochemistry applications. Lab Chip. 2014;14(14):2556–2564.
Google Scholar | Crossref | Medline30. Frank, C, Winter, G, Rensei, F, et al. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem. 2019;4(1):24.
Google Scholar | Crossref | Medline31. Wang, J, Chao, PH, Hanet, S, van Dam, RM. Performing multi-step chemical reactions in microliter-sized droplets by leveraging a simple passive transport mechanism. Lab Chip. 2017;17(24):4342–4355.
Google Scholar | Crossref | Medline32. Wang, J, Chao, PH, van Dam, RM. Ultra-compact, automated microdroplet radiosynthesizer. Lab Chip. 2019;19(14):2415–2424.
Google Scholar | Crossref | Medline33. Iwata, R, Pascali, C, Terasaki, K, et al. Practical microscale one-pot radiosynthesis of 18F-labeled probes. J Labelled Comp Radiopharm. 2018;61(7):540–549.
Google Scholar | Crossref | Medline34. Keng, PY, van Dam, RM. Digital microfluidics: a new paradigm for radiochemistry. Mol Imag. 2015;14(12):579–594.
Google Scholar | SAGE Journals35. Chen, S, Javed, MR, Kim, H-K, et al. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip. Lab Chip. 2014;14(5):902–910.
Google Scholar | Crossref | Medline36. Fiel, SA, Yang, H, Schaffer, P, et al. Magnetic droplet microfluidics as a platform for the concentration of [18F]fluoride and radiosynthesis of sulfonyl [18f]fluoride. ACS Appl Mater Interfaces. 2015;7(23):12923–12929.
Google Scholar | Crossref | Medline37. Wang, J, Chao, PH, Slavik, R, van Dam, RM. Multi-GBq production of the radiotracer [18F]fallypride in a droplet microreactor. RSC Adv. 2020;10(13):7828–7838.
Google Scholar | Crossref38. Keng, PY, Chen, S, Ding, H, et al. Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci U S A. 2012;109(3):690–695.
Google Scholar | Crossref | Medline39. Wang, J . Radiochemistry in microdroplets: technologies and applications. Doctoral dissertation, University of California Los Angeles, Los Angeles, CA, USA. 2019.
Google Scholar40. Javed, MR, Chen, S, Lei, J, et al. High yield and high specific activity synthesis of [18F]fallypride in a batch microfluidic reactor for micro-PET imaging. Chem Commun. 2014;50(10):1192–1194.
Google Scholar | Crossref | Medline41. Javed, MR, Chen, S, Kim, H-K, et al. Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med. 2014;55(2):321–328.
Google Scholar | Crossref | Medline42. Koag, MC, Kim, H-K, Kim, AS. Efficient microscale synthesis of [18F]-2-fluoro-2-deoxy-d-glucose. Chem Eng J. 2014;258:62–68.
Google Scholar | Crossref43. Koag, MC, Kim, H-K, Kim, AS. Fast and efficient microscale radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine. J Fluor Chem. 2014;166:104–109.
Google Scholar | Crossref44. Sergeev, M, Lazari, M, Morgia, F, et al. Performing radiosynthesis in microvolumes to maximize molar activity of tracers for positron emission tomography. Communi Chem. 2018;1(1):10.
Google Scholar | Crossref45. Li, J, Ha, NS, T, ‘Leo’ Liu, van Dam, RM, ‘CJ’ Kim, CJ. Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature. 2019;572(7770):507–510.
Google Scholar | Crossref | Medline46. Park, S-Y, Teitell, MA, Chiou, EPY. Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab Chip. 2010;10(13):1655–1661.
Google Scholar | Crossref | Medline47. Darhuber, AA, Valentino, JP, Troian, SM. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab Chip. 2010;10(8):1061–1071.
Google Scholar | Crossref | Medline48. Guttenberg, Z, Müller, H, Habermüller, H, et al. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip. 2005;5(3):308–317.
Google Scholar | Crossref | Medline49. Zhang, Y, Nguyen, N-T. Magnetic digital microfluidics—a review. Lab Chip. 2017;17(6):994–1008.
Google Scholar | Crossref | Medline50. Yu, W, Lin, H, Wang, Y, et al. A ferrobotic system for automated microfluidic logistics. Sci Robot. 2020;5(39):eaba4411.
Google Scholar | Crossref | Medline51. Dooraghi, AA, Keng, PY, Chen, S, et al. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging. Analyst. 2013;138(19):5654–5664.
Google Scholar | Crossref | Medline52. Kim, H-K, Rashed Javed, M, Chen, S, et al. On-demand radiosynthesis of N-succinimidyl-4-[18 F]fluorobenzoate ([18 F]SFB) on an electrowetting-on-dielectric microfluidic chip for 18 F-labeling of protein. RSC Adv. 2019;9(55):32175–32183.
Google Scholar |

留言 (0)

沒有登入
gif