Concrete Scale Models, Essential Idealization, and Causal Explanation

This paper defends three claims about concrete or physical models: (i) these models remain important in science and engineering, (ii) they are often essentially idealized, in a sense to be made precise, and (iii) despite these essential idealizations, some of these models may be reliably used for the purpose of causal explanation. This discussion of concrete models is pursued using a detailed case study of some recent models of landslide generated impulse waves. Practitioners show a clear awareness of the idealized character of these models, and yet address these concerns through a number of methods. This paper focuses on experimental arguments that show how certain failures to accurately represent feature X are consistent with accurately representing some causes of feature Y, even when X is causally relevant to Y. To analyse these arguments, the claims generated by a model must be carefully examined and grouped into types. Only some of these types can be endorsed by practitioners, but I argue that these endorsed claims are sufficient for limited forms of causal explanation.

留言 (0)

沒有登入
gif