Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction

1. Fishman, S. Education in prosthetics and orthotics. Prosthet Orthot Int 1977; 1: 52–55.
Google Scholar | SAGE Journals2. Reiber, GE, McFarland, LV, Hubbard, S, et al. Service members and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev 2010; 47: 275–297.
Google Scholar | Crossref | Medline3. Roffman, CE, Buchanan, J, Allison, GT. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J Physiother 2014; 60: 224–231.
Google Scholar | Crossref | Medline4. Meulenbelt, HE, Geertzen, JH, Jonkman, MF, et al. Determinants of skin problems of the stump in lower-limb amputees. Arch Phys Med Rehabil 2009; 90: 74–81.
Google Scholar | Crossref | Medline | ISI5. Durmus, D, Safaz, I, Adıgüzel, E, et al. The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees. Compr Psychiatry 2015; 59: 45–53.
Google Scholar | Crossref | Medline6. Dudek, NL, Marks, MB, Marshall, SC, et al. Dermatologic conditions associated with use of a lower-extremity prosthesis. Arch Phys Med Rehabil 2005; 86: 659–663.
Google Scholar | Crossref | Medline | ISI7. Sanders, JE, Fatone, S. Residual limb volume change: systematic review of measurement and management. J Rehabil Res Dev 2011; 48: 949–986.
Google Scholar | Crossref | Medline8. Ghoseiri, K, Safari, MR. Prevalence of heat and perspiration discomfort inside prostheses: literature review. J Rehabil Res Dev 2014; 51: 855–868.
Google Scholar | Crossref | Medline9. Kunutsor, SK, Gillatt, D, Blom, AW. Systematic review of the safety and efficacy of osseointegration prosthesis after limb amputation. Br J Surg 2018; 105: 1731–1741.
Google Scholar | Crossref | Medline10. Atallah, R, Leijendekkers, RA, Hoogeboom, TJ, et al. Complications of bone-anchored prostheses for individuals with an extremity amputation: a systematic review. PLoS ONE 2018; 13: e0201821.
Google Scholar | Crossref | Medline11. Eshraghi, A, Osman, NAA, Gholizadeh, H, et al. 100 top-cited scientific papers in limb prosthetics. Biomed Eng Online 2013; 12: 119.
Google Scholar | Crossref | Medline12. Radcliffe, CW. The biomechanics of below-knee prostheses in normal, level, bipedal walking. Artif Limbs 1962; 6: 16–24.
Google Scholar | Medline13. Staats, TB, Lundt, J. The UCLA total surface bearing suction below-knee prosthesis. Clin Prosthet Orthot 1987; 11: 118–130.
Google Scholar14. Fillauer, CE, Pritham, CH, Fillauer, KD. Evolution and development of the silicone suction socket (3S) for below-knee prostheses. J Prosthet Orthot 1989; 1: 92–103.
Google Scholar | Crossref15. Kristinsson, Ö . The ICEROSS concept: a discussion of a philosophy. Prosthet Orthot Int 1993; 17: 49–55.
Google Scholar | SAGE Journals | ISI16. Wu, Y, Casanova, H, Smith, WK, et al. CIR sand casting system for trans-tibial socket. Prosthet Orthot Int 2003; 27: 146–152.
Google Scholar | SAGE Journals | ISI17. Radcliffe, CW. Functional considerations in the fitting of above-knee prostheses. Artif Limbs 1955; 2: 35–60.
Google Scholar | Medline18. Long, IA. Normal shape-normal alignment (NSNA) above-knee prosthesis. Clin Prosthet Orthot 1985; 9: 9–14.
Google Scholar19. Sabolich, J. Contoured adducted trochanteric-controlled alignment method (CAT-CAM): introduction and basic principles. Clin Prosth Ortho 1985; 9: 15–26.
Google Scholar20. Pritham, CH. Biomechanics and shape of the above-knee socket considered in light of the ischial containment concept. Prosthet Orthot Int 1990; 14: 9–21.
Google Scholar | SAGE Journals | ISI21. Traballesi, M, Delussu, AS, Averna, T, et al. Energy cost of walking in transfemoral amputees: comparison between Marlo anatomical socket and ischial containment socket. Gait Posture 2011; 34: 270–274.
Google Scholar | Crossref | Medline | ISI22. Alley, RD, Williams, TW, Albuquerque, MJ, et al. Prosthetic sockets stabilized by alternating areas of tissue compression and release. J Rehabil Res Dev 2011; 48: 679–696.
Google Scholar | Crossref | Medline23. Redhead, RG. Total surface bearing self suspending above-knee sockets. Prosthet Orthot Int 1979; 3: 126–136.
Google Scholar | SAGE Journals | ISI24. Kahle, JT, Highsmith, MJ. Transfemoral sockets with vacuum-assisted suspension comparison of hip kinematics, socket position, contact pressure, and preference: Ischial containment versus brimless. J Rehabil Res Dev 2013; 50: 1241–1252.
Google Scholar | Crossref | Medline25. Fatone, S, Caldwell, R. Northwestern University flexible subischial vacuum socket for persons with transfemoral amputation-part 1: description of technique. Prosthet Orthot Int 2017; 41: 237–245.
Google Scholar | SAGE Journals | ISI26. Grevsten, S. Ideas on the suspension of the below-knee prosthesis. Prosthet Orthot Int 1978; 2: 3–7.
Google Scholar | SAGE Journals | ISI27. Caspers, CA. Hypobarically-controlled artificial limb for amputees. Patent 5549709, USA, 1996.
Google Scholar28. Fatone, S, Caldwell, R. Northwestern University flexible subischial vacuum socket for persons with transfemoral amputation: part 2 description and preliminary evaluation. Prosthet Orthot Int 2017; 41: 246–250.
Google Scholar | SAGE Journals | ISI29. Caldwell, R, Fatone, S. Technique modifications for a suction suspension version of the Northwestern University flexible sub-ischial vacuum socket: the Northwestern University flexible sub-ischial suction socket. Prosthet Orthot Int 2019; 43: 233–239.
Google Scholar | SAGE Journals | ISI30. Highsmith, MJ, Kahle, JT, Miro, RM, et al. Prosthetic interventions for people with transtibial amputation: systematic review and meta-analysis of high-quality prospective literature and systematic reviews. J Rehabil Res Dev 2016; 53: 157–184.
Google Scholar | Crossref | Medline31. Gholizadeh, H, Lemaire, ED, Eshraghi, A. The evidence-base for elevated vacuum in lower limb prosthetics: literature review and professional feedback. Clin Biomech 2016; 37: 108–116.
Google Scholar | Crossref | Medline32. Safari, MR, Meier, MR. Systematic review of effects of current transtibial prosthetic socket designs – part 1: qualitative outcomes. J Rehabil Res Dev 2015; 52: 491–508.
Google Scholar | Crossref | Medline33. Safari, MR, Meier, MR. Systematic review of effects of current transtibial prosthetic socket designs – part 2: quantitative outcomes. J Rehabil Res Dev 2015; 52: 509–526.
Google Scholar | Crossref | Medline34. Kahle, JT, Orriola, JJ, Johnston, W, et al. The effects of vacuum-assisted suspension on residual limb physiology, wound healing, and function: a systematic review. Technol Innov 2014; 15: 333–341.
Google Scholar | Crossref35. Highsmith, MJ, Kahle, JT, Lewandowski, A, et al. Economic evaluations of interventions for transtibial amputees: a scoping review of comparative studies. Technol Innov 2019; 18: 85–98.
Google Scholar | Crossref36. Richardson, A, Dillon, MP. User experience of transtibial prosthetic liners: a systematic review. Prosthet Orthot Int 2017; 41: 6–18.
Google Scholar | SAGE Journals | ISI37. Klute, GK, Glaister, BC, Berge, JS. Prosthetic liners for lower limb amputees: a review of the literature. Prosthet Orthot Int 2010; 34: 146–153.
Google Scholar | SAGE Journals | ISI38. Baars, EC, Schrier, E, Dijkstra, PU, et al. Prosthesis satisfaction in lower limb amputees: a systematic review of associated factors and questionnaires. Medicine 2018; 97: e12296.
Google Scholar | Crossref | Medline39. Pirouzi, G, Abu Osman, NA, Eshraghi, A, et al. Review of the socket design and interface pressure measurement for transtibial prosthesis. Sci World J 2014; 849073.
Google Scholar40. Stevens, PM, DePalma, RR, Wurdeman, SR. Transtibial socket design, interface, and suspension: a clinical practice guideline. J Prosthet Orthot 2019; 31: 172–178.
Google Scholar | Crossref41. Young, C, Loshak, H. Elevated vacuum suspension systems for adults with amputation: a review of clinical effectiveness, cost-effectiveness, and guidelines (Rapid Response Report 2020). Ottawa, ON, Canada: Canadian Agency for Drugs and Technologies in Health, 2020.
Google Scholar42. Gailey, RS, Lawrence, D, Burditt, C, et al. The CAT-CAM socket and quadrilateral socket: a comparison of energy cost during ambulation. Prosthet Orthot Int 1993; 17: 95–100.
Google Scholar | SAGE Journals | ISI43. Flandry, F, Beskin, J, Chambers, RB, et al. The effect of the CAT-CAM above-knee prosthesis on functional rehabilitation. Clin Orthop Relat Res 1989; 239: 249–262.
Google Scholar44. Lee, VS, Solomonidis, SE, Spence, WD. Stump-socket interface pressure as an aid to socket design in prostheses for trans-femoral amputees-a preliminary study. Proc Inst Mech Eng H 1997; 211: 167–180.
Google Scholar | SAGE Journals | ISI45. Hachisuka, K, Umezu, Y, Ogata, H, et al. Subjective evaluations and objective measurements of the ischial-ramal containment prosthesis. J Uoeh 1999; 21: 107–118.
Google Scholar | Crossref | Medline46. Klotz, R, Colobert, B, Botino, M, et al. Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee. Ann Phys Rehabil Med 2011; 54: 399–410.
Google Scholar | Crossref | Medline47. Kahle, JT, Highsmith, MJ. Transfemoral interfaces with vacuum assisted suspension comparison of gait, balance, and subjective analysis: Ischial containment versus brimless. Gait Posture 2014; 40: 315–320.
Google Scholar | Crossref | Medline | ISI48. Kahle, J, Miro, RM, Ho, LT, et al. The effect of the transfemoral prosthetic socket interface designs on skeletal motion and socket comfort: a randomized clinical trial. Prosthet Orthot Int 2020; 44: 145–154.
Google Scholar | SAGE Journals | ISI49. Gholizadeh, H, Abu Osman, NA, Eshraghi, A, et al. Transfemoral prosthesis suspension systems: a systematic review of the literature. Am J Phys Med Rehabil 2014; 93: 809–823.
Google Scholar | Crossref | Medline | ISI50. Gerschutz, MJ, Haynes, ML, Colvin, JM, et al. A vacuum suspension measurement tool for use in prosthetic research and clinical outcomes: validation and analysis of vacuum pressure in a prosthetic socket. J Prosthet Orthot 2010; 22: 172–176.
Google Scholar | Crossref51. Gerschutz, MJ, Hayne, ML, Colvin, JM, et al. Dynamic effectiveness evaluation of elevated vacuum suspension. J Prosthet Orthot 2015; 27: 161–165.
Google Scholar | Crossref52. Wernke, MM, Schroeder, RM, Haynes, ML, et al. Progress toward optimizing prosthetic socket fit and suspension using elevated vacuum to promote residual limb health. Adv Wound Care 2017; 6: 233–239.
Google Scholar | Crossref53. Goswami, J, Lynn, R, Street, G, et al. Walking in a vacuum-assisted socket shifts the stump fluid balance. Prosthet Orthot Int 2003; 27: 107–113.
Google Scholar | SAGE Journals | ISI54. Board, WJ, Street, GM, Caspers, C. A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthet Orthot Int 2001; 25: 202–209.
Google Scholar | SAGE Journals | ISI55. Beil, TL, Street, GM, Covey, SJ. Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J Rehabil Res Dev 2002; 39: 693–700.

留言 (0)

沒有登入
gif