PM2.5 inducing myocardial fibrosis mediated by Ang II/ERK1/2/TGF-β1 signaling pathway in mice model

1. Franck, U, Odeh, S, Wiedensohler, A, et al. The effect of particle size on cardiovascular disorders -The smaller the worse. Sci Total Environ 2011; 409: 4217–4221.
Google Scholar | Crossref | Medline2. Valavanidis, A, Fiotakis, K, Vlachogianni, T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2008; 26: 339–362.
Google Scholar | Crossref | Medline | ISI3. Mills, NL, Amin, N, Robinson, SD, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med 2006; 173: 426–431.
Google Scholar | Crossref | Medline4. Gilar, M, Belenky, A, Wang, BH. High-throughput biopolymer desalting bysolid-phase extraction prior to mass spectrometric analysis. J Chromatogr A 2001; 921: 3–13.
Google Scholar | Crossref | Medline5. Araujo, JA, Nel, AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Par Fibre Toxicol 2009; 6: 24.
Google Scholar | Crossref | Medline | ISI6. Quay, JL, Reed, W, Samet, J, et al. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-kappa B activation. Am J Respir Cell Mol Biol 1998; 19: 98–106.
Google Scholar | Crossref | Medline | ISI7. Veronesi, B, Oortgiesen, M, Carter, JD, et al. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line. Toxicol Appl Pharmacol 1999; 154: 106–115.
Google Scholar | Crossref | Medline8. van Eeden, SF, Tan, WC, Suwa, T, et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10). Am J Respir Crit Care Med 2001; 164: 826–830.
Google Scholar | Crossref | Medline | ISI9. Hartz, AM, Bauer, B, Block, ML, et al. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 2008; 22: 2723–2733.
Google Scholar | Crossref | Medline | ISI10. Törnqvist, H, Mills, NL, Gonzalez, M, et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med 2007; 176: 395–400.
Google Scholar | Crossref | Medline | ISI11. Rückerl, R, Greven, S, Ljungman, P, et al. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect 2007; 115: 1072–1080.
Google Scholar | Crossref | Medline12. Wan, Q, Yang, YP, Liu, ZY. Puerarin attenuates PM2.5-induced vascular endothelial cells injury via ERK1/2 signaling pathway. Zhongguo Zhong Yao Za Zhi 2016; 41: 2309–2314.
Google Scholar | Medline13. Rui, W, Guan, L, Zhang, F, et al. PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 2016; 36: 48–59.
Google Scholar | Crossref | Medline | ISI14. Archacki, SR, Angheloiu, G, Tian, XL, et al. Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol Genomics 2003; 15: 65–74.
Google Scholar | Crossref | Medline | ISI15. Book, RD, Rajagopalan, S, POPE, CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 2010; 121(211): 2331–2378.
Google Scholar | Medline16. Hvidtfeldt, UA, Geels, C, Sørensen, M, et al. Long-term residential exposure to PM2.5 constituents and mortality in a Danish cohort. 2019; 133: 105268.
Google Scholar17. Dehbi, HM, Blangiardo, M, Gulliver, J, et al. Air pollution and cardiovascular mortality with over 25years follow-up: a combined analysis of two British cohorts. Environ Int 2017; 99: 275–281
Google Scholar | Crossref | Medline18. Kim, IS, Yang, PS, Lee, J, et al. Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study. J Cardiol 2019; 19: 30344–30342.
Google Scholar19. Zhao, B, Johnston, FH, Salimi, F, et al. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan. Lancet Planet Health 2020; 4(1): e15–e23.
Google Scholar | Crossref20. Wolters, PJ, Collard, HR, Jones, KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 2014; 9: 157–179.
Google Scholar | Crossref | Medline | ISI21. Chen, JJ, Ma, WM, Yuan, JL, et al. PM2.5 exposure aggravates left heart failure induced pulmonary hypertension. Acta Cardiol 2019; 74(3): 238–244.
Google Scholar | Crossref | Medline22. Zheng, R, Tao, L, Jian, H, et al. NLRP3 inflammasome activation and lung fibrosis caused by airborne fine particulate matter. Ecotoxicol Environ Saf 2018; 163: 612–619.
Google Scholar | Crossref | Medline23. Cho, HY, Reddy, SP, Yamamoto, M, et al. The transcription factor NRF2 protects against pulmonary fibrosis. FASEB 2004; 18: 1258–1260.
Google Scholar | Crossref | Medline24. Deng, X, Rui, W, Zhang, F, et al. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 2013; 29: 143–157.
Google Scholar | Crossref | Medline | ISI25. Shin, JA, Chung, JS, Cho, SH, et al. Expression contributes to oxidative stress-induced death of lung epithelial cells. Biochem Biophys Res Commun 2013; 439: 315–320.
Google Scholar | Crossref | Medline26. Pennathur, S, Vivekanandan-Giri, A, Locy, ML, et al. Oxidative modifications of protein tyrosyl residues are increased in plasma of human subjects with interstitial lung disease. Am J Respir Crit Care Med 2016; 193: 861–868.
Google Scholar | Crossref | Medline27. Berk, BC, Fujiwara, K, Lehoux, S. ECM remodeling in hypertensive heart disease. J Clin Invest 2007; 117: 568–575.
Google Scholar | Crossref | Medline | ISI28. Bernaba, BN, Chan, JB, Lai, CK, et al. Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol 2010; 19: 308–311.
Google Scholar | Crossref | Medline29. Takeda, N, Manabe, I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam 2011; 2011: 535241.
Google Scholar | Crossref | Medline30. Konstam, MA, Kramer, DG, Patel, AR, et al. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011; 4(1): 98–108.
Google Scholar | Crossref | Medline31. Aoki, T, Fukumoto, Y, Sugimura, K, et al. Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. -Comparison between preserved and reduced ejection fraction heart failure. Circ J 2011; 75(11): 2605–2613.
Google Scholar | Crossref | Medline32. Jong, WMC, Cate, HT, Linnenbank, AC, et al. Reduced acute myocardial ischemia - reperfusion injury in IL - 6 - deficient mice employing a closed - chest model. Inflam Res 2016; 65(6): 489–495.
Google Scholar | Crossref | Medline33. Harada, K, Komuro, I, Shiojima, I, et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998; 97: 1952–1959.
Google Scholar | Crossref | Medline | ISI34. Brown, MD, Sacks, DB. Compartmentalised MAPK pathways. Handb Exp Pharmacol 2008; 186: 205–235.
Google Scholar | Crossref35. Schultz, JEJ, Witt, SA, Glascock, BJ, et al. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 2002; 109: 787–796.
Google Scholar | Crossref | Medline36. Zhao, J, Liu, T, Liu, E, et al. The potential role of atrial natriuretic peptide in the effects of Angiotensin-(1–7) in a chronic atrial tachycardia canine model. J Renin Angiotensin Aldosterone Syst 2016; 17(1): 1470320315627409.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif