Co-delivery of the autophagy inhibitor si-Beclin1 and the doxorubicin nano-delivery system for advanced prostate cancer treatment

1. Siegel, RL, Miller, KD, Jemal, A. Cancer statstics, 2019. CA Cancer J Clin 2019; 69(1): 7–34.
Google Scholar | Crossref | Medline2. Nader, R, Amm, JE, Aragon-Ching, JB. Role of chemotherapy in prostate cancer. Asian J Androl 2018; 20(3): 221–229.
Google Scholar | Crossref | Medline3. Blessing, AM, Rajapakshe, K, Bollu, LR, et al. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy 2017; 13(3): 506–521.
Google Scholar | Crossref | Medline4. Cai, Z, Chen, W, Zhang, J, et al. Androgen receptor: what we know and what we expect in castration-resistant prostate cancer. Int Urol Nephrol 2018; 50(10): 1753–1764.
Google Scholar | Crossref | Medline5. Nevedomskaya, E, Baumgart, SJ, Haendler, B. Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci 2018; 19(5): 1359.
Google Scholar | Crossref6. Quinn, DI, Sandler, HM, Horvath, LG, et al. The evolution of chemotherapy for the treatment of prostate cancer. Ann Oncol 2017; 28(11): 2658–2669.
Google Scholar | Crossref | Medline7. Barata, PC, Sartor, AO. Metastatic castration-sensitive prostate cancer: Abiraterone, docetaxel, or. Cancer 2019; 125(11): 1777–1788.
Google Scholar | Crossref | Medline8. Evans, AJ . Treatment effects in prostate cancer. Mod Pathol 2018; 31(S1): S110–S121.
Google Scholar | Crossref | Medline9. Ramos-Esquivel, A, Fernández, C, Zeledón, Z. Androgen-deprivation therapy plus chemotherapy in metastatic hormone-sensitive prostate cancer. A systematic review and meta-analysis of randomized clinical trials. Urol Oncol 2016; 34(8): 335.e9–335.e19.
Google Scholar | Crossref10. Gupta, S, Gupta, PK, Dharanivasan, G, et al. Current prospects and challenges of nanomedicine delivery in prostate cancer therapy. Nanomedicine (Lond) 2017; 12(23): 2675–2692.
Google Scholar | Crossref | Medline11. Farrow, JM, Yang, JC, Evans, CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol 2014; 11(9): 508–516.
Google Scholar | Crossref | Medline12. Naponelli, V, Modernelli, A, Bettuzzi, S, et al. Roles of autophagy induced by natural compounds in prostate cancer. Biomed Res Int 2015; 2015: 121826.
Google Scholar | Crossref | Medline13. Li, YJ, Lei, YH, Yao, N, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer 2017; 36(1): 52.
Google Scholar | Crossref | Medline14. Chen, C, Lu, L, Yan, S, et al. Autophagy and doxorubicin resistance in cancer. Anticancer Drugs 2018; 29(1): 1–9.
Google Scholar | Crossref | Medline15. Wirawan, E, Berghe, TV, Lippens, S, et al. Autophagy: for better or for worse. Cell Res 2012; 22(1): 43–61.
Google Scholar | Crossref | Medline | ISI16. Yun, CW, Lee, SH. The roles of autophagy in cancer. Int J Mol Sci 2018; 19(11): 3466.
Google Scholar | Crossref17. Onorati, AV, Dyczynski, M, Ojha, R, et al. Targeting autophagy in cancer. Cancer 2018; 124(16): 3307–3318.
Google Scholar | Crossref | Medline18. Hsieh, MJ, Lin, CW, Yang, SF, et al. A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicol Sci 2014; 137(1): 65–75.
Google Scholar | Crossref | Medline19. Pan, B, Chen, D, Huang, J, et al. HMGB1-mediated autophagy promotes docetaxel resistance in human lung adenocarcinoma. Mol Cancer 2014; 13: 165.
Google Scholar | Crossref | Medline | ISI20. Jiang, Y, Yang, N, Zhang, H, et al. Enhanced in vivo antitumor efficacy of dual-functional peptide-modified docetaxel nanoparticles through tumor targeting and Hsp90 inhibition. J Control Release 2016; 221: 26–36.
Google Scholar | Crossref | Medline21. Rohatgi, RA, Janusis, J, Leonard, D, et al. Beclin 1 regulates growth factor receptor signaling in breast cancer. Oncogene 2015; 34(42): 5352–5362.
Google Scholar | Crossref | Medline22. Liang, XH, Jackson, S, Seaman, M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672–676.
Google Scholar | Crossref | Medline | ISI23. Russo, M, Russo, GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153: 51–61.
Google Scholar | Crossref | Medline24. De, S, Das, S, Sengupta, S. Involvement of HuR in the serum starvation induced autophagy through regulation of Beclin1 in breast cancer cell-line, MCF-7. Cell Signal 2019; 61: 78–85.
Google Scholar | Crossref | Medline25. Yang, M, Yang, XM, Yin, DH, et al. Beclin1 enhances cisplatin-induced apoptosis via Bcl-2-modulated autophagy in laryngeal carcinoma cells Hep-2. Neoplasma. 2018; 65(1):42–48.
Google Scholar | Crossref26. Aita, VM, Liang, XH, Murty, V, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999; 59(1): 59–65.
Google Scholar | Crossref | Medline | ISI27. Xi, G, Hu, X, Wu, B, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Let 2011; 307(2): 141–148.
Google Scholar | Crossref | Medline28. Saleem, A, Dvorzhinski, D, Santanam, U, et al. Effect of dual inhibition of apoptosis and autophagy in prostate cancer. Prostate 2012; 72(12): 1374–1381.
Google Scholar | Crossref | Medline | ISI29. Xiong, XB, Falamarzian, A, Garg, SM, et al. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Release 2011; 155(2): 248–261.
Google Scholar | Crossref | Medline30. Gaucher, G, Dufresne, MH, Sant, VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005; 109(1–3): 169–188.
Google Scholar | Crossref | Medline31. Maeda, H, Nakamura, H, Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71–79.
Google Scholar | Crossref | Medline32. Maruyama, K . Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 2011; 63(3): 161–169.
Google Scholar | Crossref | Medline33. Smith, SA, Selby, LI, Johnston, APR, et al. The endosomal escape of nanoparticles: toward more efficient cellular delivery. Bioconjug Chem 2019; 30(2): 263–272.
Google Scholar | Crossref | Medline34. Futaki, S, Suzuki, T, Ohashi, W, et al. Arginine-rich peptides An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276(8): 5836–5840.
Google Scholar | Crossref | Medline35. Futaki, S . Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliver Rev 2005; 57(4): 547–558.
Google Scholar | Crossref | Medline36. Lorents, A, Säälik, P, Langel, Ü, et al. Arginine-rich cell-penetrating peptides require nucleolin and cholesterol-poor subdomains for translocation across membranes. Bioconjug Chem 2018; 29(4): 1168–1177.
Google Scholar | Crossref | Medline37. Lächelt, U, Kos, P, Mickler, FM, et al. Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine 2014; 10(1): 35–44.
Google Scholar | Crossref | Medline38. Midoux, P, Pichon, C, Yaouanc, JJ, et al. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 2009; 157(2): 166–178.
Google Scholar | Crossref | Medline | ISI39. Yin, J, Ren, W, Yang, G, et al. L-Cysteine metabolism and its nutritional implications. Mol Nutr Food Res 2016; 60(1): 134–146.
Google Scholar | Crossref | Medline40. Tian, M, Guo, F, Sun, Y, et al. A fluorescent probe for intracellular cysteine overcoming the interference by glutathione. Mol Nutr Food Res 2016; 60(1): 134–146.
Google Scholar | Medline41. Tai, ZG, Wang, XY, Tian, J, et al. Biodegradable stearylated peptide with internal disulfide bonds for efficient delivery of siRNA in vitro and in vivo. Biomacromolecules 2015; 16(4): 1119–1130.
Google Scholar | Crossref | Medline42. Acharya, S, Sahoo, SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011; 63(3): 170–183.
Google Scholar | Crossref | Medline | ISI43. Conner, SD, Schmid, SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37–44.
Google Scholar | Crossref | Medline | ISI44. Derakhshankhah, H, Jafari, S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother 2018; 108: 1090–1096.
Google Scholar | Crossref | Medline45. Jafarzadeh-Holagh, S, Hashemi-Najafabadi, S, Shaki, H, et al. Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interf Sci 2018; 1(523): 179–190.
Google Scholar | Crossref46. Du, C, Liang, Y, Ma, Q, et al. Intracellular tracking of drug release from pH-sensitive polymeric nanoparticles via FRET for synergistic chemo-photodynamic therapy. J Nanobiotechnology 2019; 717(1): 113.
Google Scholar | Crossref47. Li, Z, Qiu, L, Chen, Q, et al. pH-sensitive nanoparticles of poly(L-histidine)-poly(lactide-co-glycolide)-tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater 2015; 11: 137–150.
Google Scholar | Crossref | Medline48. Yameen, B, Choi, WI, Vilos, C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190: 485–499.
Google Scholar | Crossref | Medline49. Ross, N L, Munsell, EV, Sabanayagam, C, et al. Histone-targeted polyplexes avoid endosomal escape and enter the nucleus during postmitotic redistribution of ER membranes. Mol Ther Nucleic Acids 2015; 4(2): e226.
Google Scholar | Crossref | Medline50. Zhou, C, Zhong, W, Zhou, J, et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 2012; 8(8): 1215–1226.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif