Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System

1.

Liong M-T. Probiotics: biology, genetics and health aspects: Springer Science & Business Media, Berlin, Heidelberg; 2011.

2.

Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94–102.

CAS  PubMed  Google Scholar 

3.

Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160–74.

CAS  Google Scholar 

4.

Ohland CL, MacNaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2010;298(6):G807–G19.

CAS  Google Scholar 

5.

Chapman C, Gibson GR, Rowland I. In vitro evaluation of single-and multi-strain probiotics: inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe. 2012;18(4):405–13.

CAS  PubMed  Google Scholar 

6.

Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D, et al. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol. 2018;9:1953.

PubMed  PubMed Central  Google Scholar 

7.

Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci Rep. 2017;7(1):1–14.

CAS  Google Scholar 

8.

Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10(1):1–11.

Google Scholar 

9.

Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-cadherin/β-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol. 2012;78(4):1140.

CAS  PubMed  PubMed Central  Google Scholar 

10.

Fábrega M-J, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, et al. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front Microbiol. 2017;8:1274.

PubMed  PubMed Central  Google Scholar 

11.

Merenstein D, Murphy M, Fokar A, Hernandez RK, Park H, Nsouli H, et al. Use of a fermented dairy probiotic drink containing Lactobacillus casei (DN-114 001) to decrease the rate of illness in kids: the DRINK study a patient-oriented, double-blind, cluster-randomized, placebo-controlled, clinical trial. Eur J Clin Nutr. 2010;64(7):669–77.

CAS  PubMed  PubMed Central  Google Scholar 

12.

Wu Y, Wang B, Xu H, Tang L, Li Y, Gong L, et al. Probiotic Bacillus attenuates oxidative stress-induced intestinal injury via p38-mediated autophagy. Front Microbiol. 2019;10:2185.

CAS  PubMed  PubMed Central  Google Scholar 

13.

Shida K, Nanno M, Nagata S. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes. 2011;2(2):109–14.

PubMed  Google Scholar 

14.

Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132(2):562–75.

CAS  PubMed  Google Scholar 

15.

Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Factories. 2020;19(1):23.

Google Scholar 

16.

Zhang W, Ji H, Zhang D, Liu H, Wang S, Wang J, et al. Complete genome sequencing of Lactobacillus plantarum ZLP001, a potential probiotic that enhances intestinal epithelial barrier function and defense against pathogens in pigs. Front Physiol. 2018;9:1689.

PubMed  PubMed Central  Google Scholar 

17.

Du W, Xu H, Mei X, Cao X, Gong L, Wu Y, et al. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Benefic Microbes. 2018;9(5):743–54.

CAS  Google Scholar 

18.

Alvarez C-S, Badia J, Bosch M, Giménez R, Baldomà L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol. 2016;7:1981.

PubMed  PubMed Central  Google Scholar 

19.

Kuugbee ED, Shang X, Gamallat Y, Bamba D, Awadasseid A, Suliman MA, et al. Structural change in microbiota by a probiotic cocktail enhances the gut barrier and reduces cancer via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci. 2016;61(10):2908–20.

CAS  PubMed  Google Scholar 

20.

Zhao X, Yang J, Ju Z, Wu J, Wang L, Lin H, et al. Clostridium butyricum ameliorates Salmonella enteritis induced inflammation by enhancing and improving immunity of the intestinal epithelial barrier at the intestinal mucosal level. Front Microbiol. 2020;11:299.

PubMed  PubMed Central  Google Scholar 

21.

Guo S, Gillingham T, Guo Y, Meng D, Zhu W, Walker WA, et al. Secretions of Bifidobacterium infantis and Lactobacillus acidophilus protect intestinal epithelial barrier function. J Pediatr Gastroenterol Nutr. 2017;64(3):404–12.

CAS  PubMed  Google Scholar 

22.

Peng M, Liu J, Liang Z. Probiotic Bacillus subtilis CW14 reduces disruption of the epithelial barrier and toxicity of ochratoxin A to Caco-2 cells. Food Chem Toxicol. 2019;126:25–33.

CAS  PubMed  Google Scholar 

23.

Hsieh CY, Osaka T, Moriyama E, Date Y, Kikuchi J, Tsuneda S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep. 2015;3(3):e12327.

PubMed  PubMed Central  Google Scholar 

24.

Orlando A, Linsalata M, Bianco G, Notarnicola M, D’Attoma B, Scavo MP, et al. Lactobacillus rhamnosus GG protects the epithelial barrier of wistar rats from the pepsin-trypsin-digested gliadin (PTG)-induced enteropathy. Nutrients. 2018;10(11):1698.

PubMed Central  Google Scholar 

25.

Dodoo CC, Wang J, Basit AW, Stapleton P, Gaisford S. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int J Pharm. 2017;530(1-2):224–9.

CAS  PubMed  Google Scholar 

26.

Liu C, Zhang Z-Y, Dong K, Guo X-K. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407. World J Gastroenterol. 2010;16(18):2283.

CAS  PubMed  PubMed Central  Google Scholar 

27.

Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011;3(5):613–36.

PubMed  PubMed Central  Google Scholar 

28.

González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, et al. Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol. 2012;78(11):3992.

PubMed  PubMed Central  Google Scholar 

29.

Kotzamanidis C, Kourelis A, Litopoulou-Tzanetaki E, Tzanetakis N, Yiangou M. Evaluation of adhesion capacity, cell surface traits and immunomodulatory activity of presumptive probiotic Lactobacillus strains. Int J Food Microbiol. 2010;140(2-3):154–63.

CAS  PubMed  Google Scholar 

30.

Desantis S, Mastrodonato M, Accogli G, Rossi G, Crovace AM. Effects of a probiotic on the morphology and mucin composition of pig intestine. Histol Histopathol. 2019;34:1037–50.

CAS  PubMed  Google Scholar 

31.

von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, et al. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol. 2010;76(7):2049.

Google Scholar 

32.

Candela M, Turroni S, Centanni M, Fiori J, Bergmann S, Hammerschmidt S, et al. Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment. Appl Environ Microbiol. 2011;77(19):7072.

CAS  PubMed  PubMed Central  Google Scholar 

33.

Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol. 2012;12(7):503–16.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol. 2010;2010:305879.

PubMed  PubMed Central  Google Scholar 

35.

Ocampo J, Afanador N, Vives MJ, Moreno JC, Leidy C. The antibacterial activity of phospholipase A2 type IIA is regulated by the cooperative lipid chain melting behavior in Staphylococcus aureus. Biochim Biophys Acta Biomembr. 2010;1798(6):1021–8.

CAS  Google Scholar 

36.

Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.

PubMed  PubMed Central  Google Scholar 

37.

Král M, Angelovičová M, Mrázová Ľ. Application of probiotics in poultry production. Sci Pap Anim Sci Biotechnol. 2012;45(1):55–7.

Google Scholar 

38.

Nakamura S, Kuda T, An C, Kanno T, Takahashi H, Kimura B. Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe. 2012;18(1):19–24.

PubMed  Google Scholar 

39.

Adhikari PA, Kim WK. Overview of prebiotics and probiotics: focus on performance, gut health and immunity-a review. Ann Anim Sci. 2017;17(4):949.

Google Scholar 

40.

Van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes. 2020;12(1):1831339.

PubMed  PubMed Central  Google Scholar 

41.

Gryp T, Huys GR, Joossens M, Van Biesen W, Glorieux G, Vaneechoutte M. Isolation and quantification of uremic toxin precursor-generating gut bacteria in chronic kidney disease patients. Int J Mol Sci. 2020;21(6):1986.

CAS  PubMed Central  Google Scholar 

42.

Reis J, Paula A, Casarotti S, Penna A. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng Rev. 2012;4(2):124–40.

CAS  Google Scholar 

43.

Mulaw G, Muleta D, Tesfaye A, Sisay T. Protective Effect of Potential Probiotic Strains from Fermented Ethiopian Food against Salmonella Typhimurium DT104 in Mice", Int J Microbiol 2020;2020, Article ID 7523629, 8 pages. https://doi.org/10.1155/2020/7523629.

44.

Živković ST, Stošić SS, Ristić DT, Vučurović IB, Stevanović ML. Antagonistic potential of lactobacillus plantarum against some postharvest pathogenic fungi. Zbornik Matice srpske za prirodne nauke. 2019;(136):79–88. https://doi.org/10.2298/ZMSPN1936079Z.

45.

Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–78.

PubMed  Google Scholar 

46.

Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benefic Microbes. 2011;2(2):103–14.

CAS  Google Scholar 

47.

Kuczyńska B, Wasilewska A, Biczysko M, Banasiewicz T, Drews M. Krótkołańcuchowe kwasy tłuszczowe–mechanizmy działania, potencjalne zastosowania kliniczne oraz zale

留言 (0)

沒有登入
gif