Enhancement the Mycosynthesis of Selenium Nanoparticles by Using Gamma Radiation

1. Hussain, I, Singh, NB, Singh, A, Singh, H, Singh, SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545-560. doi:10.1007/s10529-015-2026-7.
Google Scholar | Crossref | Medline2. Mirzaei, H, Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017;43(1):907-914. https://www.sciencedirect.com/science/article/pii/S0272884216318144.
Google Scholar | Crossref3. Singh, P, Kim, Y-J, Zhang, D, Yang, D-C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588-599. https://www.sciencedirect.com/science/article/abs/pii/S0167779916000408.
Google Scholar | Crossref | Medline4. Li, L, Zhou, P, Zhang, H, Meng, X, Li, J, Sun, T. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix. Appl Surf Sci. 2017;407:197-208. https://www.sciencedirect.com/science/article/abs/pii/S0169433217301411.
Google Scholar | Crossref5. Vetchinkina, E, Loshchinina, E, Kursky, V, Nikitina, V. Reduction of organic and inorganic selenium compounds by the edible medicinal basidiomycete Lentinula edodes and the accumulation of elemental selenium nanoparticles in its mycelium. J Microbiol. 2013;51(6):829-835. https://link.springer.com/article/10.1007/s12275-013-2689-5.
Google Scholar | Crossref | Medline6. Devi, LS, Joshi, SR. Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern himalaya. Mycobiology. 2012;40(1):27-34. DOI: 10.5941/MYCO.2012.40.1.027.
Google Scholar | Crossref | Medline7. Parikh, RY, Singh, S, Prasad, BLV, Patole, MS, Sastry, M, Shouche, YS. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem. 2008;9(9):1415-1422. https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cbic.200700592.
Google Scholar | Crossref | Medline8. Zare, B, Babaie, S, Setayesh, N, Shahverdi, AR. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed J. 2013;1(1):13-19. http://nmj.mums.ac.ir/?_action=articleInfo&article=698.
Google Scholar9. Hariharan, H, Al-Harbi, N, Karuppiah, P, Rajaram, S. Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett. 2012;9(12):509-515.
Google Scholar10. Sarkar, J, Dey, P, Saha, S, Acharya, K. Mycosynthesis of selenium nanoparticles. Micro Nano Lett. 2011;6(8):599-602. https://digital-library.theiet.org/content/journals/10.1049/mnl.2011.0227.
Google Scholar | Crossref11. Bansal, V, Rautaray, D, Ahmad, A, Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem. 2004;14(22):3303-3305. https://pubs.rsc.org/en/content/articlehtml/2004/jm/b407904c.
Google Scholar | Crossref12. El-Ramady, H, Alshaal, T, Elhawat, N, El-Dein Omara, A, El-Nahrawy, E, Omara, AE-D, et al. Biological aspects of selenium and silicon nanoparticles in the terrestrial environments. In: Phytoremediation. Cham, Switzerland: Springer; 2019:235-264. https://link.springer.com/chapter/10.1007/978-3-319-99651-6_11#citeas.
Google Scholar13. Tallentire, A . Radio Sterilization of Medical Products, Pharmaceuticals and Bio Products. Techl. Report Series No. 72. Vienna: International Atomic Energy Agency; 1967.
Google Scholar14. Mutwakil, MH . Mutation Induction in Aspergillus terrus using N-methyl-N’-nitro-N-nitrosoguanidine (NTG) and gamma rays. Aust J Basic Appl Sci. 2011;5(12):496-500. https://www.researchgate.net/profile/Mohammed_Mutwakil/publication/265945082_Mutation_Induction_in_Aspergillus_terrus_Using_N-Methyl-N'-Nitro-N-Nitrosoguanidine_NTG_and_Gamma_Rays/links/551b80300cf251c35b509be4/Mutation-Induction-in-Aspergillus-terrus-Using-N-Methyl-N-Nitro-N-Nitrosoguanidine-NTG-and-Gamma-Rays.pdf
Google Scholar15. Haggag, WM, Mohamed, HAA. Enhanecment of antifungal metabolite production from gamma-ray induced mutants of some Trichoderma species for control onion white disease. Plant Pathol Bullet. 2002;11:45-56. ‏ http://140.112.183.156/pdf/11-1/11-1-7.pdf.
Google Scholar16. El-Batal, A, Essam, TM, El-Zahaby, DA, Amin, MA. Synthesis of selenium nanoparticles by Bacillus laterosporus using gamma radiation. Br J Pharmaceut Res. 2014;4:1364-1386. http://www.journaljpri.com/index.php/JPRI/article/view/18576.
Google Scholar | Crossref17. Kojima, S, Matsuki, O, Kinoshita, I, Valdes Gonzalez, T, Shimura, N, Kubodera, A. Does small-dose γ-ray radiation induce endogenous antioxidant potential in vivo? Biol Pharm Bull. 1997;20(6):601-604. https://www.jstage.jst.go.jp/article/bpb1993/20/6/20_6_601/_article/-char/ja/.
Google Scholar | Crossref | Medline | ISI18. Yamaoka, K . Activation of antioxidant system by low dose radiation and its applicable possibility for treatment of reactive oxygen species-related diseases. J Clin Biochem Nutr. 2006;39(3):114-133. https://www.jstage.jst.go.jp/article/jcbn/39/3/39_3_114/_article/-char/ja/.
Google Scholar | Crossref19. EL- Metawelly, MM, Ahmed, HY, Mekawey, AA, Abd EL-Fatah, SM. Gamma radiation in improvement the production and anticancer of noval l-asparaginase fungal producer Fusarium incarnatum. J Appl Sci Res. 2019;6(4):14-23.
Google Scholar20. Abdel-Aziz, MM, Yosri, M, Amin, BH. Control of imipenem resistant-Klebsiella pneumoniaepulmonary infection by oral treatment using a combination of mycosynthesized Ag-nanoparticles and imipenem. J Radiat Res Appl Sci. 2017;10(4):353-360. https://www.tandfonline.com/doi/full/10.1016/j.jrras.2017.09.002.
Google Scholar | Crossref21. Amin, BH . Isolation and characterization of antiprotozoal and antimicrobial metabolite from Penicillium roqueforti. Afr J Mycol Biotech. 2016;21(3):13-26.
Google Scholar22. Elsherbiny, EA, Amin, BH, Baka, ZA. Efficiency of pomegranate (Punica granatum L.) peels extract as a high potential natural tool towards Fusarium dry rot on potato tubers. Postharvest Biol Technol. 2016;111:256-263. https://www.sciencedirect.com/science/article/abs/pii/S0925521415301241.
Google Scholar | Crossref23. Beutler, E, Duron, O, Kelly, BM Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882-888. https://ci.nii.ac.jp/naid/10005420816/.
Google Scholar | Medline24. Blatchley, ER, Meeusen, A, Aronson, AI, Brewster, L. Inactivation of Bacillus spores by ultraviolet or gamma radiation. J Environ Eng. 2005;131(9):1245-1252. https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9372.
Google Scholar | Crossref25. Dhanjal, S, Cameotra, S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories. 2010;9(1):52. https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-9-52.
Google Scholar | Crossref | Medline26. Wang, T, Yang, L, Zhang, B, Liu, J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces. 2010;80(1):94-102. https://www.sciencedirect.com/science/article/abs/pii/S0927776510002973.
Google Scholar | Crossref | Medline27. Pages, D, Rose, J, Conrod, S, Cuine, S, Carrier, P, Heulin, T, et al. Heavy metal tolerance in Stenotrophomonas maltophilia. PLoS One. 2008;3(2): e1539. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212715/.
Google Scholar | Crossref | Medline28. Biswas, KC, Barton, LL, Tsui, WL, Shuman, K, Gillespie, J, Eze, CS. A novel method for the measurement of elemental selenium produced by bacterial reduction of selenite. J Microbiol Methods. 2011;86(2):140-144. https://www.sciencedirect.com/science/article/pii/S0167701211001576.
Google Scholar | Crossref | Medline29. Chen, F, Zhang, XH, Hu, XD, Liu, PD, Zhang, HQ. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro. Artif Cells Nanomed Biotechnol. 2018;46(5):937-948. https://www.tandfonline.com/doi/full/10.1080/21691401.2017.1347941.
Google Scholar | Crossref | Medline30. Worrall, E, Hamid, A, Mody, K, Mitter, N, Pappu, H. Nanotechnology for plant disease management. Agronomy. 2018;8(12):285. https://www.mdpi.com/2073-4395/8/12/285.
Google Scholar | Crossref31. Moaveni, P, Karimi, K, Valojerdi, MZ. The nanoparticles in plants: Review. J Nano Struct Chem. 2011;2:59-78.
Google Scholar32. Joshi, S, De Britto, S, Jogaiah, S, Ito, S-i. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019;9(9):419. https://www.mdpi.com/2218-273X/9/9/419.
Google Scholar | Crossref33. Fesharaki, PJ, Nazari, P, Shakibaie, M, Rezaie, S, Banoee, M, Abdollahi, M, et al. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol. 2010;41(2):461-466. https://www.scielo.br/scielo.php?pid=S1517-83822010000200028&script=sci_arttext.
Google Scholar | Crossref | Medline Praharaj, S, Nath, S, Panigrahi, S, Basu, S, Ghosh, SK, Pande, S, et al. Room temperature synthesis of coinage metal (Ag, Cu) chalcogenides. Chem Commun 2006;36:3836-3838. https://pubs.rsc.org/ko/content/articlehtml/2006/cc/b606681j.
Google Scholar | Crossref35. Shah, CP, Dwivedi, C, Singh, KK, Kumar, M, Bajaj, PN. Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles. Mater Res Bull. 2010;45(9):1213-1217. https://www.sciencedirect.com/science/article/pii/S0025540810001807.
Google Scholar | Crossref36. Simona, DA, Cristian, D. Enterprise Risk Management–Benefits of ISO 31000: 2018. Romanian Society for Economic Science, Revista OEconomica; 2018. https://ideas.repec.org/a/oen/econom/y2018i03-4id527.html.
Google Scholar37. Abdelghany, AM, Abdelrazek, EM, Badr, SI, Abdel-Aziz, MS, Morsi, MA. Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract. J Saudi Chem Soc. 2017;21(5):528-537. https://www.sciencedirect.com/science/article/pii/S1319610315001179.
Google Scholar | Crossref38. Shahverdi, AR, Fakhimi, A, Mosavat, G, Jafari-Fesharaki, P, Rezaie, S, Rezayat, SM. Antifungal activity of biogenic selenium nanoparticles. World Appl Sci J. 2010;10(8):918-922. https://www.cabdirect.org/cabdirect/abstract/20113003964.
Google Scholar39. Lortie, L, Gould, WD, Rajan, S, McCready, RGL, Cheng, K-J. Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol. 1992;58(12):4042-4044. https://aem.asm.org/content/58/12/4042.short.
Google Scholar | Crossref | Medline40. Wang, Y, Shu, X, Zhou, Q, Fan, T, Wang, T, Chen, X, et al. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae). Int J Mol Sci. 2018;19(9):2799. https://www.mdpi.com/1422-0067/19/9/2799.
Google Scholar | Crossref41. Mosallam, FM, El-Sayyad, GS, Fathy, RM, El-Batal, AI. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog. 2018;122:108-116. https://www.sciencedirect.com/science/article/abs/pii/S0882401018305631.
Google Scholar | Crossref | Medline42. Lampis, S, Zonaro, E, Bertolini, C, Bernardi, P, Butler, CS, Vallini, G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Factories. 2014;13(1):35. https://microbialcellfactories.biomedcentral.com/articles/10.1186/1475-2859-13-35.
Google Scholar | Crossref | Medline43. Narayanankutty, A, Job, JT, Narayanankutty, V. Glutathione, an antioxidant tripeptide: Dual roles in Carcinogenesis and Chemoprevention. Curr Protein Pept Sci. 2019;20(9):907-917. https://www.ingentaconnect.com/content/ben/cpps/2019/00000020/00000009/art00008.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif