Novel emerging biomarkers to immunotherapy in kidney cancer

1. Siegel, RL, Miller, KD, Fuchs, HE, et al. Cancer statistics, 2021. CA Cancer J Clin 2021; 71: 7–33.
Google Scholar | Crossref | Medline2. Sung, H, Ferlay, J, Siegel, RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209–249.
Google Scholar | Crossref | Medline3. Cohen, HT, McGovern, FJ. Renal-cell carcinoma. N Engl J Med 2005; 353: 2477–2490.
Google Scholar | Crossref | Medline | ISI4. Bianchi, M, Sun, M, Jeldres, C, et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann Oncol 2012; 23: 973–980.
Google Scholar | Crossref | Medline | ISI5. Manley, BJ, Hakimi, AA. Molecular profiling of renal cell carcinoma: building a bridge toward clinical impact. Curr Opin Urol 2016; 26: 383–387.
Google Scholar | Crossref | Medline6. Gerlinger, M, Horswell, S, Larkin, J, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014; 46: 225–233.
Google Scholar | Crossref | Medline | ISI7. Moch, H, Cubilla, AL, Humphrey, PA, et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol 2016; 70: 93–105.
Google Scholar | Crossref | Medline | ISI8. Latif, F, Tory, K, Gnarra, J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260: 1317–1320.
Google Scholar | Crossref | Medline | ISI9. Kaelin, WG The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8: 865–873.
Google Scholar | Crossref | Medline | ISI10. Nakano, O, Sato, M, Naito, Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001; 61: 5132–5136.
Google Scholar | Medline11. Choueiri, TK, Motzer, RJ. Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 2017; 376: 354–366.
Google Scholar | Crossref | Medline | ISI12. Hsieh, JJ, Purdue, MP, Signoretti, S, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3: 17009.
Google Scholar | Crossref | Medline13. Kotecha, RR, Motzer, RJ, Voss, MH. Towards individualized therapy for metastatic renal cell carcinoma. Nat Rev Clin Oncol 2019; 16: 621–633.
Google Scholar | Crossref | Medline14. McKay, RR, Bosse, D, Choueiri, TK. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J Clin Oncol. Epub ahead of print 29 October 2018. DOI: 10.1200/JCO.2018.79.0253.
Google Scholar | Crossref | Medline15. Motzer, RJ, Jonasch, E, Boyle, S, et al. NCCN guidelines insights: kidney cancer, version 1.2021. J Natl Compr Canc Netw 2020; 18: 1160–1170.
Google Scholar | Crossref | Medline16. Schmidt, AL, Siefker-Radtke, A, McConkey, D, et al. Renal cell and urothelial carcinoma: biomarkers for new treatments. Am Soc Clin Oncol Educ Book 2020; 40: 1–11.
Google Scholar | Medline17. Farber, NJ, Kim, CJ, Modi, PK, et al. Renal cell carcinoma: the search for a reliable biomarker. Transl Cancer Res 2017; 6: 620–632.
Google Scholar | Crossref | Medline18. Motzer, RJ, Bacik, J, Murphy, BA, et al. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 2002; 20: 289–296.
Google Scholar | Crossref | Medline | ISI19. Heng, DY, Xie, W, Regan, MM, et al. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol 2009; 27: 5794–5799.
Google Scholar | Crossref | Medline | ISI20. Singla, N . A new therapeutic era for metastatic renal cell carcinoma: call for a new prognostic model. JAMA Oncol 2020; 6: 633–634.
Google Scholar | Crossref | Medline21. Casuscelli, J, Vano, YA, Fridman, WH, et al. Molecular classification of renal cell carcinoma and its implication in future clinical practice. Kidney Cancer 2017; 1: 3–13.
Google Scholar | Crossref | Medline22. Chen, F, Zhang, Y, Senbabaoglu, Y, et al. Multilevel genomics-based taxonomy of renal cell carcinoma. Cell Rep 2016; 14: 2476–2489.
Google Scholar | Crossref | Medline23. Ricketts, CJ, De Cubas, AA, Fan, H, et al. The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 2018; 23: 313–326.e5.
Google Scholar | Crossref24. He, X, Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res 2020; 30: 660–669.
Google Scholar | Crossref | Medline25. Thompson, RH, Dong, H, Kwon, ED. Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res 2007; 13: 709s–715s.
Google Scholar | Crossref | Medline26. Iacovelli, R, Nole, F, Verri, E, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol 2016; 11: 143–148.
Google Scholar | Crossref | Medline27. Patel, SP, Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14: 847–856.
Google Scholar | Crossref | Medline | ISI28. Ettinger, DS, Wood, DE, Aisner, DL, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw 2021; 19: 254–266.
Google Scholar | Crossref | Medline29. Zhou, KI, Peterson, B, Serritella, A, et al. Spatial and temporal heterogeneity of PD-L1 expression and tumor mutational burden in gastroesophageal adenocarcinoma at baseline diagnosis and after chemotherapy. Clin Cancer Res 2020; 26: 6453–6463.
Google Scholar | Crossref | Medline30. McLaughlin, J, Han, G, Schalper, KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol 2016; 2: 46–54.
Google Scholar | Crossref | Medline | ISI31. Zou, W, Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467–477.
Google Scholar | Crossref | Medline | ISI32. Udall, M, Rizzo, M, Kenny, J, et al. PD-L1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics. Diagn Pathol 2018; 13: 12.
Google Scholar | Crossref | Medline33. Motzer, RJ, Escudier, B, McDermott, DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373: 1803–1813.
Google Scholar | Crossref | Medline | ISI34. Motzer, RJ, Tannir, NM, McDermott, DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018; 378: 1277–1290.
Google Scholar | Crossref | Medline35. Rini, BI, Plimack, ER, Stus, V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019; 380: 1116–1127.
Google Scholar | Crossref | Medline36. Choueiri, TK, Powles, T, Burotto, M, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2021; 384: 829–841.
Google Scholar | Crossref | Medline37. Motzer, R, Alekseev, B, Rha, SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med 2021; 384: 1289–1300.
Google Scholar | Crossref | Medline38. Hellmann, MD, Ciuleanu, T-E, Pluzanski, A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018; 378: 2093–2104.
Google Scholar | Crossref | Medline39. Samstein, RM, Lee, CH, Shoushtari, AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51: 202–206.
Google Scholar | Crossref | Medline40. Rizvi, NA, Hellmann, MD, Snyder, A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348: 124–128.
Google Scholar | Crossref | Medline | ISI41. McGranahan, N, Furness, AJ, Rosenthal, R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016; 351: 1463–1469.
Google Scholar | Crossref | Medline | ISI42. FDA approves pembrolizumab for adults and children with TMB-H solid tumors , 2020, https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors
Google Scholar43. Zehir, A, Benayed, R, Shah, RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017; 23: 703–713.
Google Scholar | Crossref | Medline44. Turajlic, S, Litchfield, K, Xu, H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol 2017; 18: 1009–1021.
Google Scholar | Crossref | Medline45. Labriola, MK, Zhu, J, Gupta, RT, et al. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer 2020; 8: e000319.
Google Scholar | Crossref | Medline46. Wood, MA, Weeder, BR, David, JK, et al. Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival. Genome Med 2020; 12: 33.
Google Scholar | Crossref | Medline47. Braun, DA, Hou, Y, Bakouny, Z, et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med 2020; 26: 909–918.
Google Scholar | Crossref | Medline48. McDermott, DF, Huseni, MA, Atkins, MB, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018; 24: 749–757.
Google Scholar | Crossref | Medline49. Motzer, RJ, Choueiri, TK, McDermott, DF, et al. Biomarker analyses from the phase III CheckMate 214 trial of nivolumab plus ipilimumab (N+I) or sunitinib (S) in advanced renal cell carcinoma (aRCC). J Clin Oncol

留言 (0)

沒有登入
gif