Objective Assessment System for Hearing Prediction Based on Stimulus-Frequency Otoacoustic Emissions

Abdala, C., Luo, P., Guardia, Y. (2019). Swept-Tone stimulus-frequency otoacoustic emissions in human newborns. Trends in Hearing, 23, 1–15. https://doi.org/10.1177/2331216519889226.
Google Scholar | SAGE Journals Bing, D., Ying, J., Miao, J., Lan, L., Wang, D., Zhao, L., Wang, Q. (2018). Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models. Clinical Otolaryngology, 43(3), 868–874. https://doi.org/10.1111/coa.13068.
Google Scholar | Crossref | Medline Boege, P., Janssen, T. (2002). Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. The Journal of the Acoustical Society of America, 111(4), 1810–1818. https://doi.org/10.1121/1.1460923.
Google Scholar | Crossref | Medline | ISI Brownell, W. E. (1990). Outer hair cell electromotility and otoacoustic emissions. Ear and Hearing, 11(2), 82–92. https://doi.org/10.1097/00003446-199004000-00003.
Google Scholar | Crossref | Medline Charaziak, K. K., Souza, P., Siegel, J. H. (2013). Stimulus-Frequency otoacoustic emission suppression tuning in humans: Comparison to behavioral tuning. Journal of the Association for Research in Otolaryngology, 14(6), 843–862. https://doi.org/10.1007/s10162-013-0412-1.
Google Scholar | Crossref | Medline Chen, S., Zhang, H., Wang, L., Li, G. (2014). An in-situ calibration method and the effects on stimulus frequency otoacoustic emissions. [journal article; research support, Non-U.S. Gov't]. Biomedical Engineering Online, 13, 95. https://doi.org/10.1186/1475-925X-13-95.
Google Scholar | Crossref | Medline Cheng, H., Garrick, D. J., Fernando, R. L. (2017). Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. Journal of Animal Science and Biotechnology, 8(3), 733–737, https://doi.org/10.1186/s40104-017-0164-6.
Google Scholar | Crossref Dewey, J. B., Dhar, S. (2017a). A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions. The Journal of the Acoustical Society of America, 142(5), 3069–3083. https://doi.org/10.1121/1.5009562.
Google Scholar | Crossref | Medline Dewey, J. B., Dhar, S. (2017b). Profiles of stimulus-frequency otoacoustic emissions from 0.5 to 20 kHz in humans. Journal of the Association for Research in Otolaryngology, 18(1), 89–110. https://doi.org/10.1007/s10162-016-0588-2.
Google Scholar | Crossref | Medline Ellison, J. C., Keefe, D. H. (2005). Audiometric predictions using SFOAE and middle-ear measurements. Ear and Hearing, 26(5), 487–503. https://doi.org/10.1097/01.aud.0000179692.81851.3b.
Google Scholar | Crossref | Medline Go, N. A., Stamper, G. C., Johnson, T. A. (2019). Cochlear mechanisms and otoacoustic emission test performance. Ear and Hearing, 40(2), 401–417. https://doi.org/10.1097/AUD.0000000000000625.
Google Scholar | Crossref | Medline Gong, Q., Liu, Y., Peng, Z. (2020). Estimating hearing thresholds from stimulus-frequency otoacoustic emissions. Trends in Hearing, 24, 1–15. https://doi.org/10.1177/2331216520960053.
Google Scholar | SAGE Journals Gong, Q., Wang, Y., Xian, M. (2014). An objective assessment method for frequency selectivity of the human auditory system. Biomedical Engineering Online, 13(1), 171. https://doi.org/10.1186/1475-925X-13-171.
Google Scholar | Crossref | Medline Gorga, M. P., Johnson, T. A., Kaminski, J. K., Beauchaine, K. L., Garner, C. A., Neely, S. T. (2006). Using a combination of click- and toneburst-evoked auditory brainstem response measurements to estimate pure-tone thresholds. Ear and Hearing, 27(1), 60–74. https://doi.org/10.1097/01.aud.0000194511.14740.9c.
Google Scholar | Crossref | Medline Gorga, M. P., Neely, S. T., Bergman, B., Beauchaine, K. L., Kaminski, J. R., Peters, J., Jesteadt, W. (1993a). A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects. The Journal of the Acoustical Society of America, 94(5), 2639–2648. https://doi.org/10.1121/1.407348.
Google Scholar | Crossref | Medline Gorga, M. P., Neely, S. T., Bergman, B., Beauchaine, K. L., Kaminski, J. R., Peters, J., Jesteadt, W. (1993b). Otoacoustic emissions from normal-hearing and hearing-impaired subjects: Distortion product responses. The Journal of the Acoustical Society of America, 93(41), 2050–2060. https://doi.org/10.1121/1.406691.
Google Scholar | Medline Gorga, M. P., Neely, S. T., Dorn, P. A., Hoover, B. M. (2003). Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions. The Journal of the Acoustical Society of America, 113(6), 3275. https://doi.org/10.1121/1.1570433.
Google Scholar | Crossref | Medline Gorga, M. P., Nelson, K., Davis, T., Dorn, P. A., Neely, S. T. (2000). Distortion product otoacoustic emission test performance when both 2 f1–f2 and 2 f2–f1 are used to predict auditory status. The Journal of the Acoustical Society of America, 107(4), 2128–2135. https://doi.org/10.1121/1.428494.
Google Scholar | Crossref | Medline Guinan, J. J., Backus, B. C., Lilaonitkul, W., Aharonson, V. (2003). Medial olivocochlear efferent reflex in humans: Otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. Journal of the Association for Research in Otolaryngology, 4(4), 521–540. https://doi.org/10.1007/s10162-002-3037-3.
Google Scholar | Crossref | Medline Hurley, R. M., Musiek, F. E. (1994). Effectiveness of transient-evoked otoacoustic emissions (TEOAEs) in predicting hearing level. Journal of the American Academy of Audiology, 5(3), 195–203.
Google Scholar | Medline Johnson, T. A., Neely, S. T., Kopun, J. G., Dierking, D. M., Tan, H., Converse, C., Gorga, M. P. (2007). Distortion product otoacoustic emissions: Cochlear-source contributions and clinical test performance. The Journal of the Acoustical Society of America, 122(6), 3539–3553. https://doi.org/10.1121/1.2799474.
Google Scholar | Crossref | Medline Kalluri, R., Abdala, C. (2015). Stimulus-frequency otoacoustic emissions in human newborns. The Journal of the Acoustical Society of America, 137(1), L78–L84. https://doi.org/10.1121/1.4903915.
Google Scholar | Crossref Kalluri, R., Shera, C. A. (2013). Measuring stimulus-frequency otoacoustic emissions using swept tones. The Journal of the Acoustical Society of America, 134(1), 356–368. https://doi.org/10.1121/1.4807505.
Google Scholar | Crossref | Medline Keefe, D. H., Ellison, J. C., Fitzpatrick, D. F., Gorga, M. P. (2008). Two-tone suppression of stimulus frequency otoacoustic emissionsa. The Journal of the Acoustical Society of America, 123(3), 1479–1494. https://doi.org/10.1121/1.2828209.
Google Scholar | Crossref | Medline Kemp, D. T. (1978). Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical Society of America, 64(5), 1386–1391. https://doi.org/10.1121/1.382104.
Google Scholar | Crossref | Medline | ISI Kemp, D. T., Chum, R. (1980). Properties of the generator of stimulated acoustic emissions. Hearing Research, 2(3-4), 213–232. https://doi.org/10.1016/0378-5955(80)90059-3.
Google Scholar | Crossref | Medline Lineton, B., Lutman, M. E. (2003). The effect of suppression on the periodicity of stimulus frequency otoacoustic emissions: Experimental data. The Journal of the Acoustical Society of America, 114(2), 871–882. https://doi.org/10.1121/1.1582437.
Google Scholar | Crossref | Medline Liu, Y., Xu, R., Gong, Q. (2020). Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and thresholds using machine-learning models. [journal article]. International Journal of Audiology, 60(4), 263–273. https://doi.org/10.1080/14992027.2020.1821252.
Google Scholar Maxim, T., Shera, C. A., Charaziak, K. K., Abdala, C. (2019). Effects of forward- and emitted-pressure calibrations on the variability of otoacoustic emission measurements across repeated probe fits. Ear and Hearing, 40(6), 1345–1358. https://doi.org/10.1097/AUD.0000000000000714.
Google Scholar | Crossref | Medline Mertes, I. B., Goodman, S. S. (2013). Short-latency transient-evoked otoacoustic emissions as predictors of hearing status and thresholds. The Journal of the Acoustical Society of America, 134(3), 2127–2135. https://doi.org/10.1121/1.4817831.
Google Scholar | Crossref | Medline | ISI Neely, S. T., Gorga, M. P. (1998). Comparison between intensity and pressure as measures of sound level in the ear canal. [comparative study; journal article; research support, U.S. Gov't, P.H.S.]. The Journal of the Acoustical Society of America, 104(5), 2925–2934. https://doi.org/10.1121/1.423876.
Google Scholar | Crossref | Medline Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
Google Scholar | ISI Prieve, B. A., Gorga, M. P., Schmidt, A., Neely, S., Peters, J., Schultes, L., Jesteadt, W. (1993). Analysis of transient-evoked otoacoustic emissions in normal-hearing and hearing-impaired ears. The Journal of the Acoustical Society of America, 93(6), 3308–3319. https://doi.org/10.1121/1.405715.
Google Scholar | Crossref | Medline Robinette, M. S., Glattke, T. J. (2007). Otoacoustic emissions: Clinical applications (3rd editioned.). Thieme Medical Publishers.
Google Scholar Schairer, K. S., Ellison, J. C., Fitzpatrick, D., Keefe, D. H. (2006). Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. The Journal of the Acoustical Society of America, 120(2), 901–914. https://doi.org/10.1121/1.2214147.
Google Scholar | Crossref | Medline Shera, C. A., Guinan, J. J. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. The Journal of the Acoustical Society of America, 105(2), 782–798. https://doi.org/10.1121/1.426948.
Google Scholar | Crossref | Medline Shera, C. A., Guinan, J. J. J. (2003). Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. The Journal of the Acoustical Society of America, 113(5), 2762–2772. https://doi.org/10.1121/1.1557211.
Google Scholar | Crossref | Medline Shera, C. A., Guinan, J. J., Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. [journal article; research support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323. https://doi.org/10.1073/pnas.032675099.
Google Scholar | Crossref | Medline Shew, M., New, J., Wichova, H., Koestler, D. C., Staecker, H. (2019). Using machine learning to predict sensorineural hearing loss based on perilymph micro RNA expression profile. Scientific Reports, 9, 1. https://doi.org/10.1038/s41598-019-40192-7.
Google Scholar | Crossref | Medline Stebbins, W. C., Hawkins, J. J. E., Johnson, L. G., Moody, D. B. (1979). Hearing thresholds with outer and inner hair cell loss. American Journal of Otolaryngology, 1(1), 15–27. https://doi.org/10.1016/S0196-0709(79)80004-6.
Google Scholar | Crossref | Medline Stover, L., Gorga, M. P., Neely, S. T., Montoya, D. (1996). Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. The Journal of the Acoustical Society of America, 100(2), 956–967. https://doi.org/10.1121/1.416207.
Google Scholar | Crossref | Medline Zhao, Y., Li, J., Zhang, M., Lu, Y., Xie, H., Tian, Y., Qiu, W. (2019). Machine learning models for the hearing impairment prediction in workers exposed to Complex industrial noise: A pilot study. Ear and Hearing, 40(3), 690–699. https://doi.org/10.1097/AUD.0000000000000649.
Google Scholar | Crossref | Medline Zweig, G., Shera, C. A. (1995). The origin of periodicity in the spectrum of evoked otoacoustic emissions. The Journal of the Acoustical Society of America, 98(4), 2018–2047. https://doi.org/10.1121/1.413320.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif