Smooth muscle ATP-sensitive potassium channels mediate migraine-relevant hypersensitivity in mouse models

1. Al-Karagholi, MA-M, Hansen, JM, Guo, S, et al. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine. Brain 2019; 142: 2644–2654.
Google Scholar | Crossref | Medline2. Christensen, SL, Munro, G, Petersen, S, et al. ATP sensitive potassium (KATP) channel inhibition: A promising new drug target for migraine. Cephalalgia 2020; 40: 650–664.
Google Scholar | SAGE Journals | ISI3. Christensen, SL, Rasmussen, RH, Ernstsen, C, et al. CGRP-dependent signalling pathways involved in mouse models of GTN- cilostazol- and levcromakalim-induced migraine. Cephalalgia Epub ahead of print 18 August 2021. DOI: 10.1177/03331024211038884.
Google Scholar4. Khanna, N, Malhotra, RS, Mehta, AK, et al. Interaction of morphine and potassium channel openers on experimental models of pain in mice. Fundam Clin Pharmacol 2011; 25: 479–484.
Google Scholar | Crossref | Medline5. Lohmann, AB, Welch, SP. Antisenses to opioid receptors attenuate ATP-gated K+ channel opener-induced antinociception. Eur J Pharmacol 1999; 384: 147–152.
Google Scholar | Crossref | Medline6. Narita, M, Suzuki, T, Misawa, M, et al. Role of central ATP-sensitive potassium channels in the analgesic effect and spinal noradrenaline turnover-enhancing effect of intracerebroventricularly injected morphine in mice. Brain Res 1992; 596: 209–214.
Google Scholar | Crossref | Medline7. Aziz, Q, Thomas, AM, Gomes, J, et al. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 2014; 64: 523–529.
Google Scholar | Crossref | Medline8. Pradhan, AA, Smith, ML, McGuire, B, et al. Characterization of a novel model of chronic migraine. Pain 2014; 155: 269–274.
Google Scholar | Crossref | Medline | ISI9. Bates, EA, Nikai, T, Brennan, KC, et al. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 2010; 30: 170–178.
Google Scholar | SAGE Journals | ISI10. Christensen, SL, Petersen, S, Kristensen, DM, et al. Targeting CGRP via receptor antagonism and antibody neutralisation in two distinct rodent models of migraine-like pain. Cephalalgia 2019; 39: 1827–1837.
Google Scholar | SAGE Journals | ISI11. Akerman, S, Romero-Reyes, M, Karsan, N, et al. Therapeutic targeting of nitroglycerin-mediated trigeminovascular neuronal hypersensitivity predicts clinical outcomes of migraine abortives. Pain 2021; 162: 1567–1577.
Google Scholar | Crossref | Medline12. Ashina, M, Hansen, JM, Olesen, J. Pearls and pitfalls in human pharmacological models of migraine: 30 years’ experience. Cephalalgia 2013; 33: 540–553.
Google Scholar | SAGE Journals | ISI13. Narita, M, Takamori, K, Kawashima, N, et al. Activation of central ATP-sensitive potassium channels produces the antinociception and spinal noradrenaline turnover-enhancing effect in mice. Psychopharmacol (Berl) 1993; 113: 11–14.
Google Scholar | Crossref | Medline14. Kamei, J, Kawashima, N, Narita, M, et al. Reduction in ATP-sensitive potassium channel-mediated antinociception in diabetic mice. Psychopharmacol (Berl) 1994; 113: 318–321.
Google Scholar | Crossref | Medline15. Perrotta, A, Serrao, M, Tassorelli, C, et al. Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur J Pain 2011; 15: 482–490.
Google Scholar | Crossref | Medline | ISI16. De Icco, R, Perrotta, A, Grillo, V, et al. Experimentally induced spinal nociceptive sensitization increases with migraine frequency: a single-blind controlled study. Pain 2020; 161: 429–438.
Google Scholar | Crossref | Medline17. Chaplan, SR, Bach, FW, Pogrel, JW, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55–63.
Google Scholar | Crossref | Medline | ISI18. Dixon, WJ. Efficient Analysis of Experimental Observations. Annu Rev Pharmacol Toxicol 1980; 20: 441–462.
Google Scholar | Crossref | Medline | ISI19. Burgos-Vega, CC, Quigley, LD, Trevisan Dos Santos, G, et al. Non-invasive dural stimulation in mice: A novel preclinical model of migraine. Cephalalgia 2019; 39: 123–134.
Google Scholar | SAGE Journals | ISI20. Ben Aissa, M, Tipton, AF, Bertels, Z, et al. Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 2018; 38: 1471–1484.
Google Scholar | SAGE Journals | ISI21. Christensen, SL, Hansen, RB, Storm, MA, et al. Von Frey testing revisited: Provision of an online algorithm for improved accuracy of 50% thresholds. Eur J Pain 2020; 24: 783–790.
Google Scholar | Crossref | Medline22. Bradman, MJG, Ferrini, F, Salio, C, et al. Practical mechanical threshold estimation in rodents using von Frey hairs/Semmes-Weinstein monofilaments: Towards a rational method. J Neurosci Methods 2015; 255: 92–103.
Google Scholar | Crossref | Medline23. Thunig, J, Hansen, SH, Janfelt, C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem 2011; 83: 3256–3259.
Google Scholar | Crossref | Medline24. Janfelt, C, Wellner, N, Hansen, HS, et al. Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes. J Mass Spectrom 2013; 48: 361–366.
Google Scholar | Crossref | Medline25. Janfelt, C, Wellner, N, Leger, P, et al. Visualization by mass spectrometry of 2‐dimensional changes in rat brain lipids, including N ‐acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J 2012; 26: 2667–2673.
Google Scholar | Crossref | Medline26. Schramm, T, Hester, A, Klinkert, I, et al. ImzML - A common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteomics 2012; 75: 5106–5110.
Google Scholar | Crossref | Medline | ISI27. Bokhart, MT, Nazari, M, Garrard, KP, Muddiman, DC. MSiReader v1.0: Evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom 2018; 29: 8–16.
Google Scholar | Crossref | Medline28. LaPaglia, DM, Sapio, MR, Burbelo, PD, et al. RNA-Seq investigations of human post-mortem trigeminal ganglia. Cephalalgia 2018; 38: 912–932.
Google Scholar | SAGE Journals | ISI29. Nguyen, MQ, Wu, Y, Bonilla, LS, et al. Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS One 2017; 12: e0185543.
Google Scholar | Crossref | Medline30. Lopes, DM, Denk, F, McMahon, SB. The molecular fingerprint of dorsal root and trigeminal ganglion neurons. Front Mol Neurosci 2017; 10.
Google Scholar | Crossref31. Gerhold, KA, Pellegrino, M, Tsunozaki, M, et al. The star-nosed mole reveals clues to the molecular basis of mammalian touch. PLoS One 2013; 8: e55001.
Google Scholar | Crossref | Medline32. Kogelman, LJA, Christensen, RE, Pedersen, SH, et al. Whole transcriptome expression of trigeminal ganglia compared to dorsal root ganglia in Rattus Norvegicus. Neuroscience 2017; 350: 169–179.
Google Scholar | Crossref | Medline33. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data [Internet]. [Cited 8 September 2020]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Google Scholar34. Patel, RK, Jain, M. NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. Liu Z, editor. PLoS One 2012; 7: e30619.
Google Scholar | Crossref | Medline | ISI35. Bray, NL, Pimentel, H, Melsted, P, Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 2016; 34: 525–527.
Google Scholar | Crossref | Medline | ISI36. Durinck, S, Spellman, PT, Birney, E, et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 2009; 4: 1184–1191.
Google Scholar | Crossref | Medline | ISI37. Soneson, C, Love, MI, Robinson, MD. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Res 2015; 4: 1521.
Google Scholar38. Christensen, SL, Ernstsen, C, Olesen, J, et al. No central action of CGRP antagonising drugs in the GTN mouse model of migraine. Cephalalgia 2020; 40: 924–934.
Google Scholar | SAGE Journals | ISI39. Lahmann, C, Kramer, HB, Ashcroft, FM. Systemic administration of glibenclamide fails to achieve therapeutic levels in the brain and cerebrospinal fluid of rodents. PLoS One 2015; 10: e0134476.
Google Scholar | Crossref | Medline40. Ocaña, M, Cendán, CM, Cobos, EJ, et al. Potassium channels and pain: Present realities and future opportunities. Eur J Pharmacol 2004; 500: 203–219.
Google Scholar | Crossref | Medline | ISI41. Tsantoulas, C, McMahon, SB. Opening paths to novel analgesics: The role of potassium channels in chronic pain. Trends Neurosci 2014; 37: 146–158.
Google Scholar | Crossref | Medline | ISI42. Strazielle, N, Ghersi-Egea, JF. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 2013; 10: 1473–1491.
Google Scholar | Crossref | Medline | ISI43. Zhang, Y, Pardridge, WM. Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier. J Neuroimmunol 2001; 114: 168–172.
Google Scholar | Crossref | Medline | ISI44. Al-Karagholi, MA-M, Ghanizada, H, Hansen, JM, et al. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019; 39: 1789–1797.
Google Scholar | SAGE Journals | ISI45. Al-Karagholi, MA-M, Ghanizada, H, Hansen, JM, et al. Levcromakalim, an adenosine triphosphate-sensitive potassium channel opener, dilates extracerebral but not cerebral arteries. Headache 2019; 59: 1468–1480.
Google Scholar | Crossref | Medline46. Ray, BS, Wolff, HG. Experimental studies on headache. Arch Surg 1940; 41: 813.
Google Scholar | Crossref47. Mason, BN, Russo, AF. Vascular contributions to migraine: Time to revisit? Front Cell Neurosci 2018; 12: 233.
Google Scholar | Crossref | Medline48. Goadsby, PJ, Holland, PR, Martins-Oliveira, M, et al. Pathophysiology of migraine: A disorder of sensory processing. Physiol Rev 2017; 97: 553–622.
Google Scholar | Crossref | Medline | ISI49. Moskowitz, MA. Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 1993; 43: S16–20.
Google Scholar | Medline | ISI50. Goadsby, PJ. The vascular theory of migraine–a great story wrecked by the facts. Brain. 2009; 132: 6–7.

留言 (0)

沒有登入
gif