Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques*

1. Leung, J, Duffin, J, Fisher, JA, et al. MRI-based cerebrovascular reactivity using transfer function analysis reveals temporal group differences between patients with sickle cell disease and healthy controls. NeuroImage Clin 2016; 12: 624–630.
Google Scholar | Crossref | Medline2. Juttukonda, MR, Donahue, MJ. Neuroimaging of vascular reserve in patients with cerebrovascular diseases. NeuroImage 2019; 187: 192–208.
Google Scholar | Crossref | Medline3. DeBaun, MR, Kirkham, FJ. Central nervous system complications and management in sickle cell disease. Blood 2016; 127: 829–838.
Google Scholar | Crossref | Medline4. Zlokovic, BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12: 723–738.
Google Scholar | Crossref | Medline | ISI5. Kawanabe, Y, Nauli, SM. Endothelin. Cell Mol Life Sci CMLS 2011; 68: 195–203.
Google Scholar | Crossref | Medline6. Murray, AD, Staff, RT, Shenkin, SD, et al. Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 2005; 237: 251–257.
Google Scholar | Crossref | Medline | ISI7. Sam, K, Peltenburg, B, Conklin, J, et al. Cerebrovascular reactivity and white matter integrity. Neurology 2016; 87: 2333–2339.
Google Scholar | Crossref | Medline8. Silvestrini, M, Pasqualetti, P, Baruffaldi, R, et al. Cerebrovascular reactivity and cognitive decline in patients with Alzheimer disease. Stroke 2006; 37: 1010–1015.
Google Scholar | Crossref | Medline | ISI9. Barnes, JN, Harvey, RE, Miller, KB, et al. Cerebrovascular reactivity and vascular activation in postmenopausal women with histories of preeclampsia. Hypertension 2018; 71: 110–117.
Google Scholar | Crossref | Medline10. Macedo-Campos R de, S, Adegoke, SA, Figueiredo, MS, et al. Cerebral vasoreactivity in children with sickle cell disease: a transcranial doppler study. J Stroke Cerebrovasc Dis 2018; 27: 2703–2706.
Google Scholar | Crossref | Medline11. Dandona, P, James, IM, Newbury, PA, et al. Cerebral blood flow in diabetes mellitus: evidence of abnormal cerebrovascular reactivity. Br Med J 1978; 2: 325–326.
Google Scholar | Crossref | Medline12. Ogasawara, K, Ogawa, A, Terasaki, K, et al. Use of cerebrovascular reactivity in patients with symptomatic major cerebral artery occlusion to predict 5-year outcome: comparison of xenon-133 and iodine-123-IMP single-photon emission computed tomography. J Cereb Blood Flow Metab 2002; 22: 1142–1148.
Google Scholar | SAGE Journals | ISI13. Fan, AP, Jahanian, H, Holdsworth, SJ, et al. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab 2016; 36: 842–861.
Google Scholar | SAGE Journals | ISI14. Moses, WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 2011; 648: S236–S240.
Google Scholar | Crossref | Medline | ISI15. Zhao, MY, Fan, AP, Chen, DY-T, et al. Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: impacts of arterial transit time, labeling efficiency, and hematocrit. NeuroImage 2021; 233: 117955.
Google Scholar | Crossref | Medline16. Sobczyk, O, Crawley, AP, Poublanc, J, et al. Identifying significant changes in cerebrovascular reactivity to carbon dioxide. Am J Neuroradiol 2016; 37: 818–824.
Google Scholar | Crossref | Medline17. de Boorder, MJ, Hendrikse, J, van der Grond, J. Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 2004; 35: 1350–1354.
Google Scholar | Crossref | Medline | ISI18. Yezhuvath, US, Lewis-Amezcua, K, Varghese, R, et al. On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed 2009; 22: 779–786.
Google Scholar | Crossref | Medline | ISI19. Zhao, MY, Václav  ů, L, Petersen, ET, et al. Quantification of cerebral perfusion and cerebrovascular reserve using turbo-QUASAR arterial spin labeling MRI. Magn Reson Med 2020; 83: 731–748.
Google Scholar | Crossref | Medline20. Bonte, FJ, Devous, MD, Reisch, JS. The effect of acetazolamide on regional cerebral blood flow in normal human subjects as measured by single-photon emission computed tomography. Invest Radiol 1988; 23: 564–568.
Google Scholar | Crossref | Medline | ISI21. Goode, SD, Krishan, S, Alexakis, C, et al. Precision of cerebrovascular reactivity assessment with use of different quantification methods for hypercapnia functional MR imaging. AJNR Am J Neuroradiol 2009; 30: 972–977.
Google Scholar | Crossref | Medline | ISI22. Jahanian, H, Christen, T, Moseley, ME, et al. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: a potential alternative to the breath-holding challenge? J Cereb Blood Flow Metab 2017; 37: 2526–2538.
Google Scholar | SAGE Journals | ISI23. Kassner, A, Winter, JD, Poublanc, J, et al. Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging JMRI 2010; 31: 298–304.
Google Scholar | Crossref | Medline | ISI24. Leung, J, Kim, JA, Kassner, A. Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI. J Magn Reson Imaging JMRI 2016; 43: 1191–1195.
Google Scholar | Crossref | Medline25. Catchlove, SJ, Parrish, TB, Chen, Y, et al. Regional cerebrovascular reactivity and cognitive performance in healthy aging. J Exp Neurosci 2018; 12: 1179069518785151.
Google Scholar | SAGE Journals | ISI26. Moher, D, Liberati, A, Tetzlaff, J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 2009; 6: e1000097.
Google Scholar | Crossref | Medline | ISI27. Spencer, MD, Tyndall, AV, Davenport, MH, et al. Cerebrovascular responsiveness to hypercapnia is stable over six months in older adults. Plos One 2015; 10: e0143059.
Google Scholar | Crossref | Medline28. Yen, YF, Field, AS, Martin, EM, et al. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921–928.
Google Scholar | Crossref | Medline | ISI29. Puig, O, Henriksen, OM, Vestergaard, MB, et al. Comparison of simultaneous arterial spin labeling MRI and 15O-H2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab 2019; 40: 1621–1633.
Google Scholar | SAGE Journals30. Peng, S-L, Yang, H-C, Chen, C-M, et al. Short- and long-term reproducibility of BOLD signal change induced by breath-holding at 1.5 and 3 T. NMR Biomed 2020; 33: e4195.
Google Scholar | Crossref | Medline31. Mayberg, TS, Lam, AM, Matta, BF, et al. The variability of cerebrovascular reactivity with posture and time. J Neurosurg Anesthesiol 1996; 8: 268–272.
Google Scholar | Crossref | Medline | ISI32. Beek, AH, van Wit, HM, de Rikkert, MGO, et al. Incorrect performance of the breath hold method in the old underestimates cerebrovascular reactivity and goes unnoticed without concomitant blood pressure and end-tidal CO2 registration. J Neuroimaging 2011; 21: 340–347.
Google Scholar | Crossref | Medline33. Strohm, J, Duffin, J, Fisher, JA. Circadian cerebrovascular reactivity to CO2. Respir Physiol Neurobiol 2014; 197: 15–18.
Google Scholar | Crossref | Medline34. Evanoff, NG, Mueller, BA, Marlatt, KL, et al. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40: 183–189.
Google Scholar | Crossref | Medline35. Dengel, DR, Evanoff, NG, Marlatt, KL, et al. Reproducibility of blood oxygen level-dependent signal changes with end-tidal carbon dioxide alterations. Clin Physiol Funct Imaging 2017; 37: 794–798.
Google Scholar | Crossref | Medline36. Lajoie, I, Tancredi, FB, Hoge, RD. Regional reproducibility of BOLD calibration parameter M, OEF and resting-state CMRO2 measurements with QUO2 MRI. Plos One 2016; 11: e0163071.
Google Scholar | Crossref | Medline37. McDonnell, MN, Berry, NM, Cutting, MA, et al. Transcranial doppler ultrasound to assess cerebrovascular reactivity: reliability, reproducibility and effect of posture. PeerJ 2013; 1: e65.
Google Scholar | Crossref | Medline38. Cohen, AD, Wang, Y. Improving the assessment of breath-holding induced cerebral vascular reactivity using a multiband multi-echo ASL/BOLD sequence. Sci Rep 2019; 9: 5079.
Google Scholar | Crossref | Medline39. Thrippleton, MJ, Shi, Y, Blair, G, et al. Cerebrovascular reactivity measurement in cerebral small vessel disease: rationale and reproducibility of a protocol for MRI acquisition and image processing. Int J Stroke 2017; 13: 195–206.
Google Scholar | SAGE Journals40. Sousa, I, Vilela, P, Figueiredo, P. Reproducibility of hypocapnic cerebrovascular reactivity measurements using BOLD fMRI in combination with a paced deep breathing task. NeuroImage 2014; 98: 31–41.
Google Scholar | Crossref | Medline | ISI41. Totaro, R, Marini, C, Baldassarre, M, et al. Cerebrovascular reactivity evaluated by transcranial doppler: reproducibility of different methods. Cerebrovasc Dis 1999; 9: 142–145.
Google Scholar | Crossref | Medline | ISI42. Smielewski Peter Czosnyka, M, Pickard, JD, Kirkpatrick, P. Clinical evaluation of near-Infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 1997; 28: 331–338.
Google Scholar | Crossref | Medline43. Heijtel, DFR, Mutsaerts, HJMM, Bakker, E, et al. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with 15O H2O positron emission tomography. NeuroImage 2014; 92: 182–192.
Google Scholar | Crossref | Medline | ISI44. Tancredi, FB, Lajoie, I, Hoge, RD. Test–retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J Magn Reson Imaging 2015; 42: 1144–1157.
Google Scholar | Crossref | Medline | ISI45. Leontiev, O, Buxton, RB. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI. NeuroImage 2007; 35: 175–184.
Google Scholar | Crossref | Medline | ISI46. Ravi, H, Thomas, BP, Peng, S-L, et al. On the optimization of imaging protocol for the mapping of cerebrovascular reactivity. J Magn Reson Imaging 2016; 43: 661–668.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif