A new perspective on cerebrospinal fluid dynamics after subarachnoid hemorrhage: From normal physiology to pathophysiological changes

1. Herbowski, L. The maze of the cerebrospinal fluid discovery. Anat Res Int 2013; 2013: 596027–592014.
Google Scholar | Medline2. Brinker, T, Stopa, E, Morrison, J, et al. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014; 11: 10.
Google Scholar | Crossref | Medline3. Johanson, CE, Duncan, JA, Klinge, PM, et al. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5: 10.
Google Scholar | Crossref | Medline4. Louveau, A, Smirnov, I, Keyes, TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337–341.
Google Scholar | Crossref | Medline | ISI5. Rasmussen, MK, Mestre, H, Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol 2018; 17: 1016–1024.
Google Scholar | Crossref | Medline6. Jessen, NA, Munk, AS, Lundgaard, I, et al. The glymphatic system: a beginner's guide. Neurochem Res 2015; 40: 2583–2599.
Google Scholar | Crossref | Medline | ISI7. Wright, BL, Lai, JT, Sinclair, AJ. Cerebrospinal fluid and lumbar puncture: a practical review. J Neurol 2012; 259: 1530–1545.
Google Scholar | Crossref | Medline8. Sakka, L, Coll, G, Chazal, J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128: 309–316.
Google Scholar | Crossref | Medline9. Bothwell, SW, Janigro, D, Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019; 16: 9.
Google Scholar | Crossref | Medline10. Plog, BA, Nedergaard, M. The glymphatic system in Central nervous system health and disease: past, present, and future. Annu Rev Pathol 2018; 13: 379–394.
Google Scholar | Crossref | Medline11. Abbott, NJ, Pizzo, ME, Preston, JE, et al. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic' system? Acta Neuropathol 2018; 135: 387–407.
Google Scholar | Crossref | Medline12. Lovelock, CE, Rinkel, GJ, Rothwell, PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 2010; 74: 1494–1501.
Google Scholar | Crossref | Medline | ISI13. Nieuwkamp, DJ, Setz, LE, Algra, A, et al. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 2009; 8: 635–642.
Google Scholar | Crossref | Medline | ISI14. Macdonald, RL, Schweizer, TA. Spontaneous subarachnoid haemorrhage. Lancet 2017; 389: 655–666.
Google Scholar | Crossref | Medline15. Fujii, M, Yan, J, Rolland, WB, et al. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 2013; 4: 432–446.
Google Scholar | Crossref | Medline | ISI16. Tso, MK, Macdonald, RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res 2014; 5: 174–189.
Google Scholar | Crossref | Medline | ISI17. Fang, Y, Shi, H, Ren, R, et al. Pituitary adenylate cyclase-activating polypeptide attenuates brain edema by protecting blood-brain barrier and glymphatic system after subarachnoid hemorrhage in rats. Neurotherapeutics 2020; 17: 1954–1972.
Google Scholar | Crossref | Medline18. Zhang, Z, Liu, J, Fan, C, et al. The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol 2018; 301: 13–25.
Google Scholar | Crossref | Medline19. Fumoto, T, Naraoka, M, Katagai, T, et al. The role of oxidative stress in microvascular disturbances after experimental subarachnoid hemorrhage. Transl Stroke Res 2019; 10: 684–694.
Google Scholar | Crossref | Medline20. Coulibaly, AP, Provencio, JJ. Aneurysmal subarachnoid hemorrhage: an overview of inflammation-induced cellular changes. Neurotherapeutics 2020; 17: 436–445.
Google Scholar | Crossref | Medline21. Staykov, D, Schwab, S. Clearing bloody cerebrospinal fluid: clot lysis, neuroendoscopy and lumbar drainage. Curr Opin Crit Care 2013; 19: 92–100.
Google Scholar | Crossref | Medline22. Fang, Y, Shao, Y, Lu, J, et al. The effectiveness of lumbar cerebrospinal fluid drainage in aneurysmal subarachnoid hemorrhage with different bleeding amounts. Neurosurg Rev 2020; 43: 739–747.
Google Scholar | Crossref | Medline23. Damkier, HH, Brown, PD, Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013; 93: 1847–1892.
Google Scholar | Crossref | Medline | ISI24. Solar, P, Zamani, A, Kubickova, L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17: 35.
Google Scholar | Crossref | Medline25. Abbott, NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004; 45: 545–552.
Google Scholar | Crossref | Medline | ISI26. Praetorius, J, Nejsum, LN, Nielsen, S. A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 2004; 286: C601–610.
Google Scholar | Crossref | Medline27. Hladky, SB, Barrand, MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers: a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13: 19–11.
Google Scholar | Crossref | Medline28. Boron, WF. Evaluating the role of carbonic anhydrases in the transport of HCO3-related species. Biochim Biophys Acta 2010; 1804: 410–421.
Google Scholar | Crossref | Medline | ISI29. Alper, SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212: 1672–1683.
Google Scholar | Crossref | Medline | ISI30. Praetorius, J, Damkier, HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017; 312: C673–C686.
Google Scholar | Crossref | Medline31. Keep, RF, Xiang, J, Betz, AL. Potassium cotransport at the rat choroid plexus. Am J Physiol 1994; 267: C1616–1622.
Google Scholar | Crossref | Medline32. Kanaka, C, Ohno, K, Okabe, A, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 2001; 104: 933–946.
Google Scholar | Crossref | Medline33. Zeuthen, T. Cotransport of K+, Cl- and H2O by membrane proteins from choroid plexus epithelium of necturus maculosus. J Physiol 1994; 478 (Pt 2): 203–219.
Google Scholar | Crossref | Medline34. Roepke, TK, Kanda, VA, Purtell, K, et al. KCNE2 forms potassium channels with KCNA3 and KCNQ1 in the choroid plexus epithelium. Faseb J 2011; 25: 4264–4273.
Google Scholar | Crossref | Medline35. Spector, R, Keep, RF, Robert Snodgrass, S, et al. A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 2015; 267: 78–86.
Google Scholar | Crossref | Medline36. Krug, SM, Gunzel, D, Conrad, MP, et al. Charge-selective claudin channels. Ann N Y Acad Sci 2012; 1257: 20–28.
Google Scholar | Crossref | Medline37. Abbott, NJ, Patabendige, AA, Dolman, DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37: 13–25.
Google Scholar | Crossref | Medline | ISI38. Aird, RB, Becker, RA. The blood-brain barrier in clinical disease: a review. J Nerv Ment Dis 1963; 136: 517–526.
Google Scholar | Crossref | Medline39. Ronaldson, PT, Davis, TP. Regulation of blood-brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40: S6–S24.
Google Scholar | SAGE Journals | ISI40. Li, W, Lo, EH. Leaky memories: impact of APOE4 on blood-brain barrier and dementia. J Cereb Blood Flow Metab 2020; 40: 1912–1914.
Google Scholar | SAGE Journals | ISI41. Oreskovic, D, Klarica, M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 2010; 64: 241–262.
Google Scholar | Crossref | Medline42. Petrova, TV, Koh, GY. Biological functions of lymphatic vessels. Science 2020; 369(6500): eaax4063. DOI: 10.1126/science.aax4063.
Google Scholar | Crossref | Medline43. Pollay, M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 2010; 7: 9–06.
Google Scholar | Crossref | Medline44. Tripathi, RC. The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 1977; 25 Suppl: 65–116.
Google Scholar | Crossref | Medline45. Weed, LH. Studies on Cerebro-Spinal fluid. No. III: the pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res. 1914; 31: 51–91.
Google Scholar | Medline46. Welch, K, Pollay, M. Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 1961; 201: 651–654.
Google Scholar | Crossref | Medline47. Grzybowski, DM, Holman, DW, Katz, SE, et al. In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 2006; 47: 3664–3672.
Google Scholar | Crossref | Medline48. Courtice, FC, Simmonds, WJ. The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 1951; 29: 255–263.
Google Scholar | Crossref | Medline49. Boulton, M, Flessner, M, Armstrong, D, et al. Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 1998; 274: R88–96.
Google Scholar | Medline | ISI50. Bradbury, MW, Cserr, HF, Westrop, RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981; 240: F329–336.
Google Scholar | Crossref | Medline |

留言 (0)

沒有登入
gif