TLRs in COVID-19: How they drive immunopathology and the rationale for modulation

1. Akira, S, Takeda, K, Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.
Google Scholar | Crossref | Medline | ISI2. Iwasaki, A, Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5: 987–995.
Google Scholar | Crossref | Medline | ISI3. Aoshi, T, Koyama, S, Kobiyama, K, et al. Innate and adaptive immune responses to viral infection and vaccination. Curr Opin Virol 2011; 1: 226–232.
Google Scholar | Crossref | Medline4. Lester, SN, Li, K. Toll-Like receptors in antiviral innate immunity. J Mol Biol 2014; 426: 1246–1264.
Google Scholar | Crossref | Medline5. Medzhitov, R, Preston-Hurlburt, P, Janeway, CA. A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 1997; 388: 394–397.
Google Scholar | Crossref | Medline | ISI6. Barbalat, R, Lau, L, Locksley, RM, et al. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 2009; 10: 1200–1207.
Google Scholar | Crossref | Medline | ISI7. Kawai, T, Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34: 637–650.
Google Scholar | Crossref | Medline | ISI8. Lee, K-M, Seong, S-Y. Partial role of TLR4 as a receptor responding to damage-associated molecular pattern. Immunol Lett 2009; 125: 31–39.
Google Scholar | Crossref | Medline9. Zhao, Y, Kuang, M, Li, J, et al. SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res 2021; 31: 818–820.
Google Scholar | Crossref | Medline10. Hoshino, K, Sugiyama, T, Matsumoto, M, et al. I[kappa]B kinase-[alpha] is critical for interferon-[alpha] production induced by toll-like receptors 7 and 9. Nat Lond 2006; 440: 949–953.
Google Scholar | Crossref | Medline11. Ramos, HJ, Gale, M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167–176.
Google Scholar | Crossref | Medline12. Hirano, T, Murakami, M. COVID-19: a New virus, but a familiar receptor and cytokine release syndrome. Immunity 2020; 52: 731–733.
Google Scholar | Crossref | Medline13. Liu, S-Y, Sanchez, DJ, Aliyari, R, et al. Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 2012; 109: 4239–4244.
Google Scholar | Crossref | Medline14. Kotenko, SV, Gallagher, G, Baurin, VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4: 69–77.
Google Scholar | Crossref | Medline | ISI15. Davidson, S, Maini, MK, Wack, A. Disease-Promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015; 35: 252–264.
Google Scholar | Crossref | Medline16. Rabouw, HH, Langereis, MA, Knaap, RCM, et al. Middle East Respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLOS Pathog 2016; 12: e1005982.
Google Scholar | Crossref | Medline17. Comar CE, Goldstein SA, Li Y, Yount B, Baric RS, Weiss SR. Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and NS4b Accessory Proteins during MERS Coronavirus Infection. mBio. 2019;10(2):e00319-19. Published 2019 Mar 26. doi:10.1128/mBio.00319-19
Google Scholar18. Teijaro, JR . Type I interferons in viral control and immune regulation. Curr Opin Virol 2016; 16: 31–40.
Google Scholar | Crossref | Medline19. Lokugamage KG, Hage A, de Vries M, et al. Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. J Virol. 2020;94(23):e01410-20. Published 2020 Nov 9. doi:10.1128/JVI.01410-20
Google Scholar20. Biron, CA, Nguyen, KB, Pien, GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999; 17: 189–220.
Google Scholar | Crossref | Medline | ISI21. Orlov, M, Wander, PL, Morrell, ED, et al. A case for targeting Th17 cells and IL-17A in SARS-CoV-2 infections. J Immunol 2020; 205: 892–898.
Google Scholar | Crossref | Medline22. Huang, C, Wang, Y, Li, X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395: 497–506.
Google Scholar23. Tan M, Liu Y, Zhou R, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology. 2020;160(3):261-268. doi:10.1111/imm.13223
Google Scholar24. Han, H, Ma, Q, Li, C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect 2020; 9: 1123–1130.
Google Scholar | Crossref | Medline25. Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5(13):e139834. Published 2020 Jul 9. doi:10.1172/jci.insight.139834
Google Scholar26. McElvaney, OJ, McEvoy, NL, McElvaney, OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med 2020; 202: 812–821.
Google Scholar | Crossref | Medline27. Bhatraju, PK, Ghassemieh, BJ, Nichols, M, et al. Covid-19 in critically Ill patients in the Seattle region — case series. N Engl J Med 2020; 382: 2012–2022.
Google Scholar | Crossref | Medline28. Zhou, F, Yu, T, Du, R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; 395: 1054–1062.
Google Scholar | Crossref | Medline29. Shi, S, Qin, M, Shen, B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5: 802.
Google Scholar | Crossref | Medline30. Guan, W, Ni, Z, Hu, Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382: 1708–1720.
Google Scholar | Crossref | Medline31. Gupta, A, Madhavan, MV, Sehgal, K, et al. Extrapulmonary manifestations of COVID-19. Nat Med 2020; 26: 1017–1032.
Google Scholar | Crossref | Medline32. Hadjadj, J, Yatim, N, Barnabei, L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020; 369: 718–724.
Google Scholar | Crossref | Medline33. Blanco-Melo, D, Nilsson-Payant, BE, Liu, W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181: 1036–1045. e9.
Google Scholar | Crossref | Medline34. Broggi, A, Ghosh, S, Sposito, B, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 2020; 369: 706–712.
Google Scholar | Crossref | Medline35. Acharya, D, Liu, G, Gack, MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol 2020; 20: 397–398.
Google Scholar | Crossref | Medline36. Hung, IF-N, Lung, K-C, Tso, EY-K, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet 2020; 395: 1695–1704.
Google Scholar | Crossref | Medline37. Zhou : Interferon-α2b Treatment for COVID-19 - Google Scholar [Internet]. [cited 2021 May 13]. Available from: https://scholar.google.com/scholar_lookup?author=Q + Zhou&author=V + Chen&author=CP + Shannon&title=Interferon-%CE%B12b + treatment + for + COVID-19&publication_year=2020&journal=Front + Immunol&volume=11
Google Scholar38. Davoudi-Monfared : A randomized clinical trial of…  Google Scholar [Internet]. [cited 2021 May 13]. Available from: https://scholar.google.com/scholar_lookup?author=E + Davoudi-Monfared&author=H + Rahmani&author=H + Khalili&title=A + randomized + clinical + trial + of + the + efficacy + and + safety + of + interferon + %CE%B2-1a + in + treatment + of + severe + COVID-19&publication_year=2020&journal=Antimicrob + Agents + Chemother&volume=64
Google Scholar39. Zhou, Z, Ren, L, Zhang, L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 2020; 27: 883–890. e2.
Google Scholar | Crossref | Medline40. Knoops, K, Kikkert, M, Worm, Svd, et al. SARS-Coronavirus Replication Is supported by a reticulovesicular network of modified endoplasmic Reticulum. PLOS Biol 2008; 6: e226.
Google Scholar | Crossref | Medline41. Bouvet, M, Debarnot, C, Imbert, I, et al. In vitro reconstitution of SARS-coronavirus mRNA Cap methylation. PLOS Pathog 2010; 6: e1000863.
Google Scholar | Crossref | Medline42. Han, L, Zhuang, M-W, Deng, J, et al. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3–TRIF, and cGAS-STING signaling pathways. J Med Virol 2021; 93: 5376–5389.
Google Scholar | Crossref | Medline43. Yin, X, Riva, L, Pu, Y, et al. MDA5 Governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep 2021; 34: 108628.
Google Scholar | Crossref | Medline44. Squeglia F, Romano M, Ruggiero A, Maga G, Berisio R. Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: a Structural Overview of Their Hijacking Through Multiple Viral Proteins. Front Chem. 2020;8:602162. Published 2020 Dec 10. doi:10.3389/fchem.2020.602162
Google Scholar45. Totura AL, Whitmore A, Agnihothram S, et al. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio. 2015;6(3):e00638-15. Published 2015 May 26. doi:10.1128/mBio.00638-15
Google Scholar46. Yu, K, He, J, Wu, Y, et al. Dysregulated adaptive immune response contributes to severe COVID-19. Cell Res 2020; 30: 814–816.
Google Scholar | Crossref | Medline47. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell. 2020;183(4):996-1012.e19. doi:10.1016/j.cell.2020.09.038
Google Scholar48. Zhang, B, Zhou, X, Zhu, C, et al. Immune Phenotyping Based on the Neutrophil-to-Lymphocyte Ratio and IgG Level Predicts Disease Severity and Outcome for Patients With COVID-19. Front Mol Biosci. 2020;7:157. Published 2020 Jul 3. doi:10.3389/fmolb.2020.00157.
Google Scholar49. Le Bon, A, Etchart, N, Rossmann, C, et al. Cross-priming of CD8 + T cells stimulated by virus-induced type I interferon. Nat Immunol 2003; 4: 1009–1015.
Google Scholar | Crossref | Medline | ISI50. Ferreira-Gomes, M, Kruglov, A, Durek, P, et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun 2021; 12: 1961.
Google Scholar | Crossref | Medline51. Hagberg, L, Hull, R, Hull, S, et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect Immun 1984; 46: 839–844.
Google Scholar | Crossref | Medline52. Bohannon, JK, Hernandez, A, Enkhbaatar, P

留言 (0)

沒有登入
gif