Curcumin and resveratrol inhibit chemoresistance in cisplatin-resistant epithelial ovarian cancer cells via targeting P13K pathway

1. Zhang, Y, Luo, G, Li, M, et al. Global patterns and trends in ovarian cancer incidence: age, period and birth cohort analysis. BMC Cancer 2019; 19(1): 984. DOI: 10.1186/s12885-019-6139-6. PMID: 31640608; PMCID: PMC6806513.
Google Scholar | Crossref | Medline2. Gaona-Luviano, P, Medina-Gaona, LA, Magaña-Pérez, K. Epidemiology of ovarian cancer. Chin Clin Oncol 2020; 9(4): 47. DOI: 10.21037/cco-20-34. Epub 2020 Jun 30. PMID: 32648448.
Google Scholar | Crossref | Medline3. Corradetti, B, Pisano, S, Conlan, RS, et al. Nanotechnology and immunotherapy in ovarian cancer: tracing new landscapes. J Pharmacol Exp Ther 2019; 370(3): 636–646. DOI: 10.1124/jpet.118.254979. Epub 2019 Feb 8. PMID: 30737357; PMCID: PMC6806629.
Google Scholar | Crossref | Medline4. Kanlikilicer, P, Bayraktar, R, Denizli, M, et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 2018; 38: 100–112. DOI: 10.1016/j.ebiom.2018.11.004. Epub 2018 Nov 25. Erratum in: EBioMedicine. 2020 Feb;52:102630. PMID: 30487062; PMCID: PMC6306310.
Google Scholar | Crossref | Medline5. Zhang, LY, Chen, Y, Jia, J, et al. MiR-27a promotes EMT in ovarian cancer through active Wnt/β-catenin signalling by targeting FOXO1. Cancer Biomark 2019; 24(1): 31–42. DOI: 10.3233/CBM-181229. PMID: 30614794.
Google Scholar | Crossref | Medline6. Lupia, M, Angiolini, F, Bertalot, G, et al. CD73 regulates stemness and epithelial-mesenchymal transition in ovarian cancer-initiating cells. Stem Cell Rep 2018; 10(4): 1412–1425. DOI: 10.1016/j.stemcr.2018.02.009. Epub 2018 Mar 15. PMID: 29551673; PMCID: PMC5998305.
Google Scholar | Crossref | Medline7. Ahmed, N, Kadife, E, Raza, A, et al. Ovarian cancer, cancer stem cells and current treatment strategies: a potential role of magmas in the current treatment methods. Cells 2020; 9(3): 719. DOI: 10.3390/cells9030719. PMID: 32183385; PMCID: PMC7140629.
Google Scholar | Crossref8. Ediriweera, MK, Tennekoon, KH, Samarakoon, SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147–160. DOI: 10.1016/j.semcancer.2019.05.012. Epub 2019 May 22. PMID: 31128298.
Google Scholar | Crossref | Medline9. Cheaib, B, Auguste, A, Leary, A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. Chin J Cancer 2015; 34(1): 4–16. DOI: 10.5732/cjc.014.10289. PMID: 25556614; PMCID: PMC4302085.
Google Scholar | Crossref | Medline10. Wei, X, Jia, Y, Lou, H, et al. Targeting YAP suppresses ovarian cancer progression through regulation of the PI3K/Akt/mTOR pathway. Oncol Rep 2019; 42(6): 2768–2776. DOI: 10.3892/or.2019.7370. Epub 2019 Oct 14. PMID: 31638241.
Google Scholar | Crossref | Medline11. McCubrey, JA, Lertpiriyapong, K, Steelman, LS, et al. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2017; 9(6): 1477–1536. DOI: 10.18632/aging.101250. PMID: 28611316; PMCID: PMC5509453.
Google Scholar | Crossref | Medline12. Huang, M, Liang, C, Tan, C, et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct 2019; 10(10): 6447–6458. DOI: 10.1039/c9fo01338e. PMID: 31524893.
Google Scholar | Crossref | Medline13. Zhang, L, Xue, H, Zhao, G, et al. Curcumin and resveratrol suppress dextran sulfate sodium-induced colitis in mice. Mol Med Rep 2019; 19(4): 3053–3060. DOI: 10.3892/mmr.2019.9974. Epub 2019 Feb 20. PMID: 30816479; PMCID: PMC6423642.
Google Scholar | Crossref | Medline14. D’Arcy, MS . A review of the chemopreventative and chemotherapeutic properties of the phytochemicals berberine, resveratrol and curcumin, and their influence on cell death via the pathways of apoptosis and autophagy. Cell Biol Int 2020; 44(9): 1781–1791. DOI: 10.1002/cbin.11402. Epub 2020 Jun 10. PMID: 32449796.
Google Scholar | Crossref | Medline15. Han, ZJ, Feng, YH, Gu, BH, et al. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 2018; 52(4): 1081–1094. DOI: 10.3892/ijo.2018.4280. Epub 2018 Feb 22. PMID: 29484374; PMCID: PMC5843405.
Google Scholar | Crossref | Medline16. Serrano-Gomez, SJ, Maziveyi, M, Alahari, SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 2016; 15: 18. DOI: 10.1186/s12943-016-0502-x. PMID: 26905733; PMCID: PMC4765192.
Google Scholar | Crossref | Medline17. Malhotra, A, Nair, P, Dhawan, DK. Study to evaluate molecular mechanics behind synergistic chemo-preventive effects of curcumin and resveratrol during lung carcinogenesis. PLoS One 2014; 9(4): e93820. DOI: 10.1371/journal.pone.0093820. PMID: 24705375; PMCID: PMC3976304.
Google Scholar | Crossref | Medline18. Ni, J, Cozzi, PJ, Hao, JL, et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. The Prostate 2014; 74: 602–617.
Google Scholar | Crossref | Medline19. Hao, J, Madigan, MC, Khatri, A, et al. In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One 2012; 7: e40716.
Google Scholar | Crossref | Medline | ISI20. Lowry, OH, Rorebrough, NJ, Farr, AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 93: 265–275.
Google Scholar | Crossref21. Chang, L, Graham, PH, Hao, J, et al. Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Disease 2013; 4: e875.
Google Scholar | Crossref | Medline | ISI22. Calaf, GM, Ponce-Cusi, R, Carrión, F. Curcumin and paclitaxel induce cell death in breast cancer cell lines. Oncol Rep 2018; 40(4): 2381–2388. DOI: 10.3892/or.2018.6603. Epub 2018 Jul 26. PMID: 30066930.
Google Scholar | Crossref | Medline23. Joe, AK, Liu, H, Suzui, M, et al. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res 2002; 8(3): 893–903. PMID: 11895924
Google Scholar | Medline24. Chao, H, Wang, L, Hao, J, et al. Low dose histone deacetylase inhibitor, LBH589, potentiates anticancer effect of docetaxel in epithelial ovarian cancer via PI3K/Akt pathway in vitro. Cancer Letters 2013; 329: 17–26.
Google Scholar | Crossref | Medline25. Bayat Mokhtari, R, Homayouni, TS, Baluch, N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022–38043. DOI: 10.18632/oncotarget.16723. PMID: 28410237; PMCID: PMC5514969.
Google Scholar | Crossref | Medline26. Maji, S, Panda, S, Samal, SK, et al. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Adv Cancer Res 2018; 137: 37–75. DOI: 10.1016/bs.acr.2017.11.001. Epub 2017 Dec 6. PMID: 29405977.
Google Scholar | Crossref | Medline27. Zhang, F, Wang, H, Yu, J, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Mol Cancer 2021; 20(1): 6. DOI: 10.1186/s12943-020-01299-y. PMID: 33397371; PMCID: PMC7780690.
Google Scholar | Crossref | Medline28. Barbato, L, Bocchetti, M, Di Biase, A, et al. Cancer Stem Cells and Targeting Strategies. Cells 2019; 8(8): 926. DOI: 10.3390/cells8080926. PMID: 31426611; PMCID: PMC6721823.
Google Scholar | Crossref29. Zheng, X, Carstens, JL, Kim, J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527(7579): 525–530. DOI: 10.1038/nature16064. Epub 2015 Nov 11. PMID: 26560028; PMCID: PMC4849281.
Google Scholar | Crossref | Medline30. Xu, H, Yu, WB, Gao, Y, et al. Modulatory potential of curcumin and resveratrol on p53 post-translational modifications during gastric cancer. J Environ Pathol Toxicol Oncol 2018; 37(2): 93–101. DOI: 10.1615/JEnvironPatholToxicolOncol.2018025547. PMID: 30055545.
Google Scholar | Crossref | Medline31. Niedzwiecki, A, Roomi, MW, Kalinovsky, T, et al. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016; 8(9): 552. DOI: 10.3390/nu8090552. PMID: 27618095; PMCID: PMC5037537.
Google Scholar | Crossref32. Mohapatra, P, Satapathy, SR, Siddharth, S, et al. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling. Int J Biochem Cell Biol 2015; 66: 75–84. DOI: 10.1016/j.biocel.2015.07.009. Epub 2015 Jul 23. PMID: 26212257.
Google Scholar | Crossref | Medline33. Gavrilas, LI, Cruceriu, D, Ionescu, C, et al. Pro-apoptotic genes as new targets for single and combinatorial treatments with resveratrol and curcumin in colorectal cancer. Food Funct 2019; 10(6): 3717–3726. DOI: 10.1039/c9fo01014a. PMID: 31169275.
Google Scholar | Crossref | Medline34. Malhotra, A, Nair, P, Dhawan, DK. Curcumin and resveratrol in combination modulates benzo(a)pyrene-induced genotoxicity during lung carcinogenesis. Hum Exp Toxicol 2012; 31(12): 1199–1206. DOI: 10.1177/0960327112440113. Epub 2012 Apr 24. PMID: 22531968.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif