Region-Wise Brain Response Classification of ASD Children Using EEG and BiLSTM RNN

1. Guthrie, W, Swineford, LB, Nottke, C, Wetherby, AM. Early diagnosis of autism spectrum disorder: Stability and change in clinical diagnosis and symptom presentation. J Child Psychol Psychiatry. 2013;54(5):582-590.
Google Scholar | Crossref | Medline | ISI2. Brentani, H, Paula, CS, Bordini, D, et al. Autism spectrum disorders: an overview on diagnosis and treatment. Braz J Psychiatry. 2013;35(1):62-72.
Google Scholar | Crossref3. Zablotsky, B, Black, LI, Blumberg, SJ. Estimated prevalence of children with diagnosed developmental disabilities in the United States, 2014–2016. NCHS Data Brief. 2017;29(1):1-8.
Google Scholar4. Juneja, M, Sairam, S. Autism Spectrum Disorder—An Indian Perspective. In Recent Advances in Autism. Smjournals; 2018.
Google Scholar5. Rudra, A, Belmonte, MK, Soni, PK, Banerjee, S, Mukerji, S, Chakrabarti, B. Prevalence of autism spectrum disorder and autistic symptoms in a school-based cohort of children in Kolkata, India (2017). Autism Res. 2017;10(10):1597-1605.
Google Scholar | Crossref | Medline6. Raina, SK, Chander, V, Bhardwaj, AK, et al. Prevalence of autism spectrum disorder among rural, urban, and tribal children (1–10 years of age). J Neurosci Rural Pract. 2017;8(3):368-374.
Google Scholar | Crossref | Medline7. Juneja, M, Mishra, D, Russell, PS, et al. INCLEN diagnostic tool for autism spectrum disorder (INDT-ASD): development and validation. Indian Pediatr. 2014;51(5):359-365.
Google Scholar | Crossref | Medline8. Mukherjee, SB, Aneja, S, Sharma, S, Sharma, M. Diagnostic accuracy of Indian scale for assessment of autism (ISAA) in children aged 2-9 years. Indian Pediatr. 2015;52(3):212-216.
Google Scholar | Crossref | Medline9. Shihab, AI, Dawood, FA, Kashmar, AH. Data analysis and classification of autism spectrum disorder using principal component analysis. Adv Bioinform. 2020;2020:1-9. Article ID 3407907. https://doi.org/10.1155/2020/3407907
Google Scholar | Crossref10. Dvornek, NC, Pamela, V, Kevin, AP, James, SD. Identifying autism from resting-state fMRI using long short term memory networks. Mach Learn Med Imaging. 2017;10541:362-370. https://doi.org/10.1007/978-3-319-67389-9_42
Google Scholar | Crossref | Medline11. Nomi, JS, Uddin, LQ. Developmental changes in large-scale network connectivity in autism. Neuroimage Clin. 2015;7(1):732-741. https://doi.org/10.1016/j.nicl.2015.02.024
Google Scholar | Crossref | Medline12. Courchesne, E, Pierce, K, Schumann, CM, et al. Mapping early brain development in autism. Neuron. 2007;56(2):399-413.
Google Scholar | Crossref | Medline13. Hazlett, HC, Poe, MD, Gerig, G, et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry. 2011;68(5):467-476.
Google Scholar | Crossref | Medline14. Just, M, Keller, TA, Malave, VL, Kana, RK, Varma, S. Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav R. 2012;36(4):1292-1313.
Google Scholar | Crossref | Medline | ISI15. Jeste, SS, Frohlich, J, Loo, SK. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. Curr Opin Neurol. 2015;28(2):110-116.
Google Scholar | Crossref | Medline16. Zwaigenbaum, L, Penner, M. Autism spectrum disorder: advances in diagnosis and evaluation. BMJ. 2018;361(8155):1-16. https://doi.org/10.1136/bmj.k1674
Google Scholar17. Bosl, WJ, Tager-Flusberg, H, Nelson, CA. EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Sci Rep. 2018;6828(2018):1-20.
Google Scholar18. Heunis, T, Aldrich, C, Peters, JM, et al. Recurrence quantification analysis of resting state EEG signals in autism spectrum disorder – a systematic methodological exploration of technical and demographic confounders in the search for biomarkers. BMC Med. 2018;101(2018):1-17.
Google Scholar19. Tripathy, RK, Acharya, UR. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. BBE. 2018;38(4):890-902.
Google Scholar20. Ngamga, EJ, Bialonskib, S, Marwana, N, Kurths, J, Geier, C, Lehnertz, K. Evaluation of selected recurrence measures in discriminating pre-ictal and inter-ictal periods from epileptic EEG data. Phys. Lett. A. 2016;380(16):1419-1425.
Google Scholar | Crossref21. Abdossalehi, M, Nasrabadi, AM. Evaluating the determinism of brain signals using recurrence chaotic features in positive, negative and neutral emotional states in the sources achieved from ICA algorithm. ICNSJ. 2017;4(2):63-71.
Google Scholar22. Liang, Z, Wang, Y, Ren, Y, et al. Detection of burst suppression patterns in EEG using recurrence rate. Sci. World J. 2014;2014:1-11. Article ID 295070. https://doi.org/10.1155/2014/295070
Google Scholar | Crossref23. Bosl, WJ, Loddenkemper, T, Nelson, CA. Nonlinear EEG biomarker profiles for autism and absence epilepsy. Neuropsychiatr Electrophysiol 2017;3(1):1-17. https://doi.org/10.1186/s40810-017-0023-x
Google Scholar | Crossref24. Al-nuaimi, AH, Jammeh, E, Sun, L, Ifeachor, E. Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer's disease. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:2320-2324.
Google Scholar | Medline25. Oweis, RJ, Abdulhay, EW. Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMed Eng OnLine. 2011;38(2011):1-15.
Google Scholar26. Miranda, IM, Aranha, C, Ladeira, M. Classification of EEG signals using genetic programming for feature construction. GECCO. 2019;2019:1275-1283.
Google Scholar27. Saini, N, Bhardwaj, S, Agarwal, R. Classification of EEG signals using hybrid combination of features for lie detection. Neural Comput & Appl. 2020;32(1):3777-3787.
Google Scholar | Crossref28. Kannathal, N, Acharya, UR, Limb, CM, Sadasivana, PK. Characterization of EEG—A comparative study. Comput Methods Programs Biomed. 2005;80(1):17-23.
Google Scholar | Crossref | Medline29. Webber, CL, Marwan, N. Recurrence quantification analysis theory and best practices. Springer; 2015.
Google Scholar | Crossref30. Webber, CL, Zbilut, JP. Recurrence quantification analysis of nonlinear dynamical systems. In: Riley, MA, Orden, GC, eds. Tutorials in contemporary nonlinear methods for the behavioral sciences. Springer; 2014:26-95.
Google Scholar31. Acharya, UR, Vinitha, SS, Chattopadhyay, S, Yu, W, Alvin, APC. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int J Neural Syst. 2011;21(3):199-211.
Google Scholar | Crossref | Medline | ISI32. Akbarian, B, Erfanian, A. Automatic seizure detection based on nonlinear dynamical analysis of EEG signals and mutual information. Basic Clin Neurosci. 2018;9(4):227-240.
Google Scholar | Crossref | Medline33. Li, X, Ouyang, BG, Yao, X, Guan, X. Dynamical characteristics of pre-epileptic seizures in rats with recurrence quantification analysis. Phys Lett A. 2004;333(1):164-171.
Google Scholar | Crossref34. Gruszczyńskaa, I, Mosdorfa, R, Sobaniecb, P, Żochowska-Sobaniecc, M. Epilepsy identification based on EEG signal using RQA method. Adv Med Sci. 2019; 64(1):58-64.
Google Scholar | Crossref | Medline35. Shabani, H, Mikaili, M, Noori, SMR. Assessment of recurrence quantification analysis (RQA) of EEG for development of a novel drowsiness detection system. Biomed Eng Lett. 2016;6(1):196-204.
Google Scholar | Crossref36. Gómez, GH, Infante, O, Martínez-García, P, Lerma, C. Analysis of diagonals in cross recurrence plots between heart rate and systolic blood pressure during supine position and active standing in healthy adults. Chaos. 2018;28(8):085704.
Google Scholar | Crossref | Medline37. Almeida, TP, Schlindwein, FS, Salinet, J, et al. Characterization of human persistent atrial fibrillation electrograms using recurrence quantification analysis. Chaos. 2018;28(8):085710.
Google Scholar | Crossref | Medline38. Großekathöfer, U, Manyakov, NV, Mihajlovic, V, et al. Automated detection of stereotypical motor movements in autism spectrum disorder using recurrence quantification analysis. Front. Neuroinform. 2017;11(9):1-16.
Google Scholar | Medline39. Marhon, SA, Cameron, CJF, Kremer, SC. Recurrent Neural Networks. In: Bianchini, M, Maggini, M, Jain, L, eds. Handbook on Neural Information Processing. Intelligent Systems Reference Library. Springer; 2013. ISBN: 978-3-642-36657-4.
Google Scholar | Crossref40. Lin, Y-S, Gau, SS-F, Lee, C-C. An interlocutor-modulated attentional LSTM for differentiating between subgroups of autism spectrum disorder. Interspeech. 2018;1:1-6.
Google Scholar41. Carette, R, Cilia, F, Dequen, G, Bosche, J, Guerin, JL, Vandromme, L. Automatic Autism Spectrum Disorder Detection Thanks to Eye-Tracking and Neural Network-Based Approach. In: Ahmed, M, Begum, S, Fasquel, JB, eds. Internet of Things (IoT) Technologies for HealthCare. Springer; 2018:75-81.
Google Scholar | Crossref42. Mamun, M, Al-Kadi, M, Marufuzzaman, M. Effectiveness of wavelet denoising on electroencephalogram signals. JART. 2013;11(1):156-160.
Google Scholar | Crossref43. Chourasia, VS, Mittra, AK. Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals. J Med Eng Technol. 2009;33(6):442-448.
Google Scholar | Crossref | Medline44. Eckmann, JP, Kamphorst, SO, Ruelle, D. Recurrence plots of dynamical systems. EPL. 1987;4(9):973-977.
Google Scholar | Crossref45. Marwan, N . A historical review of recurrence plots. EPJ. 2017;164(1):1-11. https://doi.org/10.1140/epjst/e2008-00829-1
Google Scholar46. Cao, L . Practical method for determining the minimum embedding dimension of a scalar time series. Physica D. 1997;110(1):43-50.
Google Scholar | Crossref47. Übeyli, ED . Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks. Digit. Signal Process. 2009;19(1):134-143.
Google Scholar | Crossref48. Guler, NF, Ubeyli, ED, Guler, I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl. 2005;29(3):506-514.
Google Scholar | Crossref | ISI49. Zheng, X, Chen, W, You, Y, Jiang, Y, Li, M, Zhang, T. Ensemble deep learning for automated visual classification using EEG signals. Pattern Recognit. 2020;102(7):107147. https://doi.org/10.1016/j.patcog.2019.107147
Google Scholar | Crossref50. Moinnereau, M-A, Brienne, T, Brodeur, S, Rouat, J, Whittingstall, K, Plourde, E. Classification of auditory stimuli from EEG signals with a regulated recurrent neural network reservoir. ECSE. 2018;1:1-5. https://arxiv.org/pdf/1804.10322.pdf
Google Scholar51. Alhagry, S, Fahmy, AA, El-Khoribi, RA. Emotion recognition based on EEG using LSTM recurrent neural network. IJACSA. 2017;8(10):1-4.
Google Scholar | Crossref52. Michielli, N, Acharya, UR, Molinari, F. Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals. Comput. Biol. Med. 2019;106(10):71-81. https://doi.org/10.1016/j.compbiomed.2019.01.013
Google Scholar | Crossref | Medline53. Marchi, E, Ferroni, G, Eyben, F, Gabrielli, L, Squartini, S, Schuller, B. Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. ICASSP. 2014;1:2164-2168. https://doi.org/10.1109/ICASSP.2014.6853982
Google Scholar54. Donahue, J, Hendricks, LA, Rohrbach, M, et al. Long-term recurrent convolutional networks for visual recognition and description. CVPR. 2014;1(4):1-14. https://arxiv.org/pdf/1411.4389.pdf
Google Scholar55. Hochreiter, S, Schmidhuber, J. Long short-term memory. Neural Comput. 1997;9(8):1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Google Scholar | Crossref | Medline | ISI56. Graves, A, Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. NNET. 2005;18(5):602-610.
Google Scholar57. Glorot, X, Bengio, Y.

留言 (0)

沒有登入
gif