Erythropoietin alleviates acute lung injury induced by ischemia-reperfusion through blocking p38 MAPK signaling

1. Cui, Y, Wang, Y, Li, G, et al. The Nox1/Nox4 inhibitor attenuates acute lung injury induced by ischemia-reperfusion in mice. PLoS One 2018; 13(12): e0209444.
Google Scholar | Crossref2. Ansari, B, Laffey, JG. Ischemia-reperfusion-induced lung injury. Crit Care Med 2012; 40: 688–690.
Google Scholar | Crossref3. Peng, C-K, Wu, C-P, Lin, J-Y, et al. Gas6/Axl signaling attenuates alveolar inflammation in ischemia-reperfusion-induced acute lung injury by up-regulating SOCS3-mediated pathway. PLoS One 2019; 14(7): e0219788.
Google Scholar | Crossref4. Lan, C-C, Peng, C-K, Tang, S-E, et al. Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion. J Thorac Cardiovasc Surg 2017; 153: 206–215.
Google Scholar | Crossref5. Liao, WI, Wu, SY, Wu, GC, et al. Ac2-26, an annexin A1 peptide, attenuates ischemia-reperfusion-induced acute lung injury. Int J Mol Sci 2017; 18(8): 1771.
Google Scholar | Crossref6. Wu, H, Ren, B, Zhu, J, et al. Pretreatment with recombined human erythropoietin attenuates ischemia-reperfusion-induced lung injury in rats. Eur J Cardio-Thoracic Surg 2006; 29(6): 902–907.
Google Scholar | Crossref7. Debeljak, N, Solár, P, Sytkowski, AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5: 563.
Google Scholar | Crossref | Medline8. Stoyanoff, TR, Todaro, JS, Aguirre, MV, et al. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: involvement of mitochondria-regulated apoptosis. Toxicology 2014; 318: 13–21.
Google Scholar | Crossref9. Rocha, J, Eduardo-Figueira, M, Barateiro, A, et al. Erythropoietin reduces acute lung injury and multiple organ failure/dysfunction associated to a scald-burn inflammatory injury in the rat. Inflammation 2015; 38(1): 312–326.
Google Scholar | Crossref10. Aoshiba, K, Onizawa, S, Tsuji, T, et al. Therapeutic effects of erythropoietin in murine models of endotoxin shock. Crit Care Med 2009; 37(3): 889–898.
Google Scholar | Crossref | Medline11. Zhu, M, Wang, L, Yang, J, et al. Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. Transplant Proc 2019; 51(3): 972–978.
Google Scholar | Crossref12. Lipsic, E, Schoemaker, RG, van der Meer, P, et al. Protective effects of erythropoietin in cardiac ischemia: from bench to bedside. J Am Coll Cardiol 2006; 48(11): 2161–2167.
Google Scholar | Crossref13. Rangarajan, V, Juul, SE. Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection. Pediatr Neurol 2014; 51(4): 481–488.
Google Scholar | Crossref14. Kakavas, S, Demestiha, T, Vasileiou, P, et al. Erythropoetin as a novel agent with pleiotropic effects against acute lung injury. Eur J Clin Pharmacol 2011; 67(1): 1–9.
Google Scholar | Crossref15. Tascilar, O, Cakmak, GK, Tekin, IO, et al. Protective effects of erythropoietin against acute lung injury in a rat model of acute necrotizing pancreatitis. World J Gastroenterol 2007; 13(46): 6172–6182.
Google Scholar | Crossref16. Ji, M-h, Tong, J-h, Tan, Y-h, et al. Erythropoietin pretreatment attenuates seawater aspiration-induced acute lung injury in rats. Inflammation 2016; 39(1): 447–456.
Google Scholar | Crossref17. Wu, H, Dong, G, Liu, H, et al. Erythropoietin attenuates ischemia-reperfusion induced lung injury by inhibiting tumor necrosis factor-α and matrix metalloproteinase-9 expression. Eur J Pharmacol 2009; 602(2-3): 406–412.
Google Scholar | Crossref18. Coulthard, LR, White, DE, Jones, DL, et al. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 2009; 15(8): 369–379.
Google Scholar | Crossref | Medline19. Koul, HK, Pal, M, Koul, S. Role of p38 MAP kinase signal transduction in solid tumors. Genes & Cancer 2013; 4(9-10): 342–359.
Google Scholar | SAGE Journals20. Sui, X, Kong, N, Ye, L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 2014; 344(2): 174–179.
Google Scholar | Crossref21. Zou, X, Blank, M. Targeting p38 MAP kinase signaling in cancer through post-translational modifications. Cancer Lett 2017; 384: 19–26.
Google Scholar | Crossref22. Wang, S, Ding, L, Ji, H, et al. The role of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 2016; 17(7).
Google Scholar | Crossref23. Lin, X, Wang, M, Zhang, J, et al. p38 MAPK: a potential target of chronic pain. Curr Med Chem 2014; 21(38): 4405–4418.
Google Scholar | Crossref24. Chen, X-L, Xia, Z-F, Ben, D-F, et al. Role of p38 mitogen-activated protein kinase in lung injury after burn trauma. Shock 2003; 19(5): 475–479.
Google Scholar | Crossref25. Xiong, L-L, Tan, Y, Ma, H-Y, et al. Administration of SB239063, a potent p38 MAPK inhibitor, alleviates acute lung injury induced by intestinal ischemia reperfusion in rats associated with AQP4 downregulation. Int Immunopharmacol 2016; 38: 54–60.
Google Scholar | Crossref26. Hung, K-Y, Liao, W-I, Pao, H-P, et al. Targeting F-box protein Fbxo3 attenuates lung injury induced by ischemia-reperfusion in rats. Front Pharmacol 2019; 10: 583.
Google Scholar | Crossref27. Sharma, AK, Linden, J, Kron, IL, et al. Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respir Res 2009; 10(1): 58.
Google Scholar | Crossref28. Xifang, L, Amanguli, Yang, P. The role of sodium hydrosulfide in the proliferation and apoptosis of exogenous SB203580 pre-treated human ovarian cancer cells. Eur J Gynaecol Oncol 2020; 41: 622–628.
Google Scholar | Crossref29. Fernandez, LG, Sharma, AK, LaPar, DJ, et al. Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2013; 145(6): 1654–1659.
Google Scholar | Crossref30. den Hengst, WA, Gielis, JF, Lin, JY, et al. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 2010; 299(5): H1283–H1299.
Google Scholar | Crossref | Medline | ISI31. Kwak, J, Kim, JH, Jang, HN, et al. Erythropoietin ameliorates ischemia/reperfusion-induced acute kidney injury via inflammasome suppression in mice. Int J Mol Sci 2020; 21(10): 21.
Google Scholar | Crossref32. Pei, Y-h, Cai, X-m, Chen, J, et al. The role of p38 MAPK in acute paraquat-induced lung injury in rats. Inhal Toxicol 2014; 26(14): 880–884.
Google Scholar | Crossref33. Grimes, JM, Grimes, KV. p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol 2020; 144: 63–65.
Google Scholar | Crossref34. Xing, J, Yu, Z, Zhang, X, et al. Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway. Int Immunopharmacol 2019; 66: 146–153.
Google Scholar | Crossref35. Li, D, Ren, W, Jiang, Z, et al. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury. Mol Med Rep 2018; 18(5): 4399–4409.
Google Scholar

留言 (0)

沒有登入
gif