Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPT-neutralizing mAb

1. Girgis, RE, Ma, SF, Ye, S, et al. Differential gene expression in chronic hypoxic pulmonary hypertension: effect of simvastatin treatment. Chest 2005; 128: 579S.
Google Scholar | Crossref | Medline2. Moreno-Vinasco, L, Gomberg-Maitland, M, Maitland, ML, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genom 2008; 33: 278–291.
Google Scholar | Crossref | Medline | ISI3. Chen, J, Sysol, JR, Singla, S, et al. Nicotinamide phosphoribosyltransferase promotes pulmonary vascular remodeling and is a therapeutic target in pulmonary arterial hypertension. Circulation 2017; 135: 1532–1546.
Google Scholar | Crossref | Medline4. Sun, X, Sun, BL, Babicheva, A, et al. Direct extracellular NAMPT involvement in pulmonary hypertension and vascular remodeling. transcriptional regulation by SOX and HIF-2alpha. Am J Respir Cell Mol Biol 2020; 63: 92–103.
Google Scholar | Crossref | Medline5. Bime, C, Casanova, NG, Nikolich-Zugich, J, et al. Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl Res 2020: S1931.
Google Scholar6. Camp, SM, Ceco, E, Evenoski, CL, et al. Unique toll-like receptor 4 activation by NAMPT/PBEF induces NFkappaB signaling and inflammatory lung injury. Sci Rep 2015; 5: 13135.
Google Scholar | Crossref | Medline | ISI7. Garten, A, Schuster, S, Penke, M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat Rev Endocrinol 2015; 11: 535–546.
Google Scholar | Crossref | Medline | ISI8. Oita, RC, Camp, SM, Ma, W, et al. Novel mechanism for nicotinamide phosphoribosyltransferase inhibition of TNF-alpha-mediated apoptosis in human lung endothelial cells. Am J Respir Cell Mol Biol 2018; 59: 36–44.
Google Scholar | Crossref | Medline9. Hong, SB, Huang, Y, Moreno-Vinasco, L, et al. Essential role of pre-B-cell colony enhancing factor in ventilator-induced lung injury. Am J Respir Crit Care Med 2008; 178: 605–617.
Google Scholar | Crossref | Medline | ISI10. Quijada, H, Bermudez, T, Kempf, CL, et al. Endothelial eNAMPT amplifies preclinical acute lung injury: efficacy of an eNAMPT-neutralising mAb. Eur Respir J 2020: 2002536.
Google Scholar11. Korhonen, H, Fisslthaler, B, Moers, A, et al. Anaphylactic shock depends on endothelial Gq/G11. J Exp Med 2009; 206: 411–420.
Google Scholar | Crossref | Medline12. Tang, H, Babicheva, A, McDermott, KM, et al . Endothelial HIF-2alpha contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol 2018; 314: L256–L275.
Google Scholar | Medline13. Bellofiore, A, Vanderpool, R, Brewis, MJ, et al . A novel single-beat approach to assess right ventricular systolic function. J Appl Physiol (1985) 2018; 124: 283–290.
Google Scholar | Crossref | Medline14. Heerdt, PM, Kheyfets, V, Charania, S, et al. A pressure-based single beat method for estimation of right ventricular ejection fraction: proof of concept. Eur Respir J 2020; 55: 1901635.
Google Scholar | Crossref | Medline15. Ahmed, MN, Zhang, Y, Codipilly, C, et al. Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med 2012; 18: 38–46.
Google Scholar | Crossref | Medline16. Tarazona, S, Furio-Tari, P, Turra, D, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 2015; 43: e140.
Google Scholar | Medline17. Langmead, B, Salzberg, SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9: 357–359.
Google Scholar | Crossref | Medline | ISI18. Law, CW, Chen, Y, Shi, W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014; 15: R29.
Google Scholar | Crossref | Medline | ISI19. Liu, R, Holik, AZ, Su, S, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res 2015; 43: e97.
Google Scholar | Crossref | Medline20. Nueda, MJ, Ferrer, A, Conesa, A. ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments. Biostatistics 2012; 13: 553–566.
Google Scholar | Crossref | Medline21. Pertea, M, Kim, D, Pertea, GM, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016; 11: 1650–1667.
Google Scholar | Crossref | Medline22. Ritchie, ME, Diyagama, D, Neilson, J, et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics 2006; 7: 261.
Google Scholar | Crossref | Medline23. Ritchie, ME, Phipson, B, Wu, D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47.
Google Scholar | Crossref | Medline | ISI24. Smyth, GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.
Google Scholar | Crossref | Medline25. Szklarczyk, D, Gable, AL, Lyon, D, et al . STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47: D607–D613..
Google Scholar | Crossref | Medline26. Tarazona, S, Garcia-Alcalde, F, Dopazo, J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res 2011; 21: 2213–2223.
Google Scholar | Crossref | Medline | ISI27. Benjamini, Y, Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995; 57: 289–300.
Google Scholar28. Tao, Y, Sam, L, Li, J, et al. Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics 2007; 23: i529–i538.
Google Scholar | Crossref | Medline29. Kim, D, Langmead, B, Salzberg, SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12: 357–360.
Google Scholar | Crossref | Medline | ISI30. Cock, PJ, Fields, CJ, Goto, N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 2010; 38: 1767–1771.
Google Scholar | Crossref | Medline | ISI31. Hassoun, PM, Mouthon, L, Barbera, JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 2009; 54: S10–S19.
Google Scholar | Crossref | Medline | ISI32. Rabinovitch, M, Guignabert, C, Humbert, M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115: 165–175.
Google Scholar | Crossref | Medline | ISI33. Pullamsetti, SS, Savai, R, Janssen, W, et al. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin Microbiol Infect 2011; 17: 7–14.
Google Scholar | Crossref | Medline34. Tang, H, Wu, K, Wang, J, et al. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension. JACC Basic Transl Sci 2018; 3: 744–762.
Google Scholar | Crossref | Medline35. Bime, C, Casanova, N, Oita, RC, et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care 2019; 23: 410.
Google Scholar | Medline36. Ye, SQ, Simon, BA, Maloney, JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 2005; 171: 361–370.
Google Scholar | Crossref | Medline | ISI37. Sun, BL, Sun, X, Casanova, N, et al. Role of secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) in prostate cancer progression: novel biomarker and therapeutic target. EBioMedicine 2020; 61: 103059.
Google Scholar | Crossref | Medline38. Pillai, VB, Sundaresan, NR, Kim, G, et al . Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol 2013; 304: H415–H426.
Google Scholar | Crossref | Medline | ISI39. Garcia, AN, Casanova, NG, Valera, DG, et al. Involvement of eNAMPT/TLR4 signaling in murine radiation pneumonitis: protection by eNAMPT neutralization. Transl Res. EPub ahead of print 18 June 2021. PMID: 34139379. DOI: 10.1016/j.trsl.2021.06.002.
Google Scholar | Crossref40. Wang, J, Tian, XT, Peng, Z, et al. HMGB1/TLR4 promotes hypoxic pulmonary hypertension via suppressing BMPR2 signaling. Vasc Pharmacol 2019; 117: 35–44.
Google Scholar | Crossref | Medline41. Xiao, G, Zhuang, W, Wang, T, et al. Transcriptomic analysis identifies Toll-like and Nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med 2020; 24: 11409–11421.
Google Scholar | Crossref | Medline42. Young, KC, Hussein, SM, Dadiz, R, et al. Toll-like receptor 4-deficient mice are resistant to chronic hypoxia-induced pulmonary hypertension. Exp Lung Res 2010; 36: 111–119.
Google Scholar | Crossref | Medline43. Soon, E, Holmes, AM, Treacy, CM, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010; 122: 920–927.
Google Scholar | Crossref | Medline | ISI

留言 (0)

沒有登入
gif