TORREY, a Phase 2 study to evaluate the efficacy and safety of inhaled seralutinib for the treatment of pulmonary arterial hypertension

1. Humbert, M , et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43(12 Suppl S): 13S–24S.
Google Scholar | Crossref | Medline | ISI2. Yamamura, A, Nayeem, MDJ, Al Mamun, A, et al. Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J 2019; 33: 7363–7374.
Google Scholar | Crossref | Medline3. Weiss, A, Boehm, M, Egemnazarov, B, et al. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction. Br J Pharmacol 2020; 1–23.
Google Scholar4. Lai, YC, Potoka, KC, Champion, HC, et al. Pulmonary arterial hypertension: the clinical syndrome. Circ Res 2014; 115: 115–130.
Google Scholar | Crossref | Medline5. Hemnes, AR, Humbert, M. Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled. Eur Respir Rev. 2017; 26: 170093.
Google Scholar | Crossref | Medline6. Perros, F, Montani, D, Dorfmuller, P, et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2008; 178: 81–88.
Google Scholar | Crossref | Medline | ISI7. Montani, D, Perros, F, Gambaryan, N, et al. C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2011; 184: 116–123.
Google Scholar | Crossref | Medline | ISI8. Zhou, X, Franklin, RA, Adler, M, et al. Circuit design features of a stable two-cell system. Cell 2018; 172: 744–757.
Google Scholar | Crossref | Medline9. Jonigk, D, Golpon, H, Bockmeyer, CL, et al. Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. Am J Pathol 2011; 179: 167–179.
Google Scholar | Crossref | Medline | ISI10. Toshner, M, Voswinckel, R, Southwood, M, et al. Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 2009; 180: 780–787.
Google Scholar | Crossref | Medline | ISI11. Stanley, ER, Chitu, V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 2014; 6: a021857.
Google Scholar | Crossref | Medline12. Abid, S, Marcos, E, Parpaleix, A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J 2019; 54: 1802308.
Google Scholar | Crossref | Medline13. Sheikh, AQ, Saddouk, FZ, Ntokou, A, et al. Cell autonomous and non-cell autonomous regulation of SMC progenitors in pulmonary hypertension. Cell Rep 2018; 23: 1152–1165.
Google Scholar | Crossref | Medline14. Joshi, N, Watanabe, S, Verma, R, et al. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur Respir J 2020; 55.
Google Scholar | Crossref | Medline15. Chen, J, Cui, X, Qian, Z, et al. Multi-omics analysis reveals regulators of the response to PDGF-BB treatment in pulmonary artery smooth muscle cells. BMC Genomics 2016; 17: 781–793.
Google Scholar | Crossref | Medline16. Porsch, H, Mehić, M, Olofsson, B, et al. Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability. J Biol Chem. 2014; 289:19747–19757.
Google Scholar | Crossref | Medline17. Galkin, A, Clemons, B, Garcia, E, et al. GB002, a novel inhaled PDGFR kinase inhibitor, demonstrates efficacy in the SU5416 hypoxia rat model of PAH. Circulation 2019; 140: A11102.
Google Scholar18. Sitapara, R, Slee, D, Salter-Cid, L, et al. In vivo efficacy of a novel, inhaled PDGFRα/β inhibitor, GB002, in the rat monocrotaline and pneumonectomy model of pulmonary arterial hypertension. Circulation 2019; 140: A12947.
Google Scholar | Medline19. Li, J, Yamashita, M, Cravets, M, et al. Phase 1A randomized double-blind placebo-controlled single-ascending dose and multiple-ascending dose studies of orally inhaled GB002 in healthy adult subjects. Am J Respir Crit Care Med 2020; 201: A2907.
Google Scholar20. Galiè, N, Barberà, JA, Frost, AE, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med 2015; 373: 834–844.
Google Scholar | Crossref | Medline | ISI21. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166: 111–117.
Google Scholar | Crossref | Medline | ISI22. Hoeper, MM, Barst, RJ, Bourge, RC, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 2013; 127: 1128–1138.
Google Scholar | Crossref | Medline | ISI23. Ghofrani, HA, Morrell, NW, Hoeper, MM, et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 2010; 182(9): 1171–1177.
Google Scholar | Crossref | Medline | ISI24. Lachant, DJ, Light, A, Offen, M, et al. Heart rate monitoring improves clinical assessment during 6-min walk. Pulm Circ 2020; 10: 1–8.
Google Scholar | SAGE Journals25. Mathai, SC, Suber, T, Khair, RM, et al. Health-related quality of life and survival in pulmonary arterial hypertension. Ann Am Thorac Soc 2016; 13: 31–39.
Google Scholar | Crossref | Medline26. Fernandes, CJ, Martins, BCS, Jardim, CVP, et al. Quality of life as a prognostic marker in pulmonary arterial hypertension. Health Qual Life Outcomes 2014; 12: 130.
Google Scholar | Crossref | Medline27. McLaughlin, VV, Gaine, SP, Howard, LS, et al. Treatment goals of pulmonary hypertension. J Am Col Cardiol 2013; 62: D73–81.
Google Scholar | Crossref | Medline | ISI28. Weatherald, J, Boucly, A, Sahay, S, et al. The low-risk profile in pulmonary arterial hypertension. Am J Respir Crit Care Med 2018; 197: 860–868.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif