Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity

1. Schwab, ME . How hard is the CNS hardware? Nat Neurosci. 2010;13(12):1444-1446.
Google Scholar | Crossref | Medline2. Dancause, N, Nudo, RJ. Shaping plasticity to enhance recovery after injury. Prog Brain Res. 2011;192:273-295.
Google Scholar | Crossref | Medline | ISI3. Murphy, TH, Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872.
Google Scholar | Crossref | Medline4. Zeiler, SR, Krakauer, JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609-616.
Google Scholar | Crossref | Medline5. Takatsuru, Y, Fukumoto, D, Yoshitomo, M, Nemoto, T, Tsukada, H, Nabekura, J. Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci. 2009;29(32):10081-10086.
Google Scholar | Crossref | Medline6. Iwai, M, Stetler, RA, Xing, J, et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010;41(5):1032-1037.
Google Scholar | Crossref | Medline | ISI7. Zhao, Y, Rempe, DA. Targeting astrocytes for stroke therapy. Neurotherapeutics. 2010;7(4):439-451.
Google Scholar | Crossref | Medline8. Boyden, ES, Zhang, F, Bamberg, E, Nagel, G, Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8(9):1263-1268.
Google Scholar | Crossref | Medline | ISI9. Li, N, Daie, K, Svoboda, K, Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature. 2016;532(7600):459-464.
Google Scholar | Crossref | Medline10. Yizhar, O, Fenno, LE, Davidson, TJ, Mogri, M, Deisseroth, K. Optogenetics in neural systems. Neuron. 2011;71(1):9-34.
Google Scholar | Crossref | Medline11. Wahl, AS, Buchler, U, Brandli, A, et al. Optogenetically stimulating intact rat corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nat Commun. 2017;8(1):1187.
Google Scholar | Crossref | Medline12. Murase, N, Duque, J, Mazzocchio, R, Cohen, LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400-409.
Google Scholar | Crossref | Medline | ISI13. Volz, LJ, Vollmer, M, Michely, J, Fink, GR, Rothwell, JC, Grefkes, C. Time-dependent functional role of the contralesional motor cortex after stroke. Neuroimage Clin. 2017;16:165-174.
Google Scholar | Crossref | Medline14. Cheng, MY, Wang, EH, Woodson, WJ, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A. 2014;111(35):12913-12918.
Google Scholar | Crossref | Medline15. Tennant, KA, Taylor, SL, White, ER, Brown, CE. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat Commun. 2017;8:15879.
Google Scholar | Crossref | Medline16. Alia, C, Spalletti, C, Lai, S, et al. Neuroplastic changes following brain Ischemia and their contribution to stroke recovery: novel approaches in neurorehabilitation. Front Cell Neurosci. 2017;11:76.
Google Scholar | Crossref | Medline17. Straudi, S, Martinuzzi, C, Baroni, A, et al. Monitoring step activity during task-oriented circuit training in high-functioning chronic stroke survivors: a proof-of-concept feasibility study. Ann Rehabil Med. 2016;40(6):989-997.
Google Scholar | Crossref | Medline18. Graef, P, Dadalt, MLR, Rodrigues, D, Stein, C, Pagnussat, AS. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: a systematic review and meta-analysis. J Neurol Sci. 2016;369:149-158.
Google Scholar | Crossref | Medline19. Hosomi, K, Morris, S, Sakamoto, T, et al. Daily repetitive transcranial magnetic stimulation for poststroke upper limb paresis in the subacute period. J Stroke Cerebrovasc Dis. 2016;25(7):1655-1664.
Google Scholar | Crossref | Medline20. Edwards, DJ . On the understanding and development of modern physical neurorehabilitation methods: robotics and non-invasive brain stimulation. J Neuroeng Rehabil. 2009;6:3.
Google Scholar | Crossref | Medline21. Edwards, DJ, Krebs, HI, Rykman, A, et al. Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor Neurol Neurosci. 2009;27(3):199-207.
Google Scholar | Medline | ISI22. Triccas, LT, Burridge, JH, Hughes, A, Verheyden, G, Desikan, M, Rothwell, J. A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation. 2015;37(2):181-191.
Google Scholar | Crossref | Medline23. Simonetti, D, Zollo, L, Milighetti, S, et al. Literature review on the effects of tDCS coupled with robotic therapy in post stroke upper limb rehabilitation. Front Hum Neurosci. 2017;11:268.
Google Scholar | Crossref | Medline24. Dana, H, Chen, TW, Hu, A, et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS One. 2014;9(9):e108697.
Google Scholar | Crossref | Medline25. Pasquini, M, Lai, S, Spalletti, C, et al. A robotic system for adaptive training and function assessment of forelimb retraction in mice. IEEE Trans Neural Syst Rehabil Eng. 2018;26(9):1803-1812.
Google Scholar | Crossref | Medline26. Spalletti, C, Lai, S, Mainardi, M, et al. A robotic system for quantitative assessment and poststroke training of forelimb retraction in mice. Neurorehabil Neural Repair. 2014;28(2):188-196.
Google Scholar | SAGE Journals | ISI27. Conti, E, Allegra Mascaro, AL, Pavone, FS. Large scale double-path illumination system with split field of view for the all-optical study of Inter-and Intra-Hemispheric functional connectivity on mice. Methods Protoc. 2019;2(1):11.
Google Scholar | Crossref28. Crocini, C, Ferrantini, C, Coppini, R, et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Sci Rep. 2016;6:35628.
Google Scholar | Crossref | Medline29. Turrini, L, Fornetto, C, Marchetto, G, et al. Optical mapping of neuronal activity during seizures in zebrafish. Sci Rep. 2017;7(1):3025.
Google Scholar | Crossref | Medline30. Cecchini, G, Scaglione, A, Allegra Mascaro, AL, et al. Cortical propagation tracks functional recovery after stroke. PLoS Comput Biol. 2021;17(5):e1008963.
Google Scholar | Crossref | Medline31. Allegra Mascaro, AL, Conti, E, Lai, S, et al. Combined rehabilitation promotes the recovery of structural and functional features of healthy neuronal networks after stroke. Cell Rep. 2019;28(13):3474-3485.e6.
Google Scholar | Crossref | Medline32. Spalletti, C, Alia, C, Lai, S, et al. Combining robotic training and inactivation of the healthy hemisphere restores pre-stroke motor patterns in mice. Elife. 2017;6:e28662.
Google Scholar | Crossref | Medline33. Paxinos, G, Franklin, KBJ. The Mouse Brain in Stereotaxic Coordinates. London and Kidlington (UK), San Diego and Cambridge (US): Elsevier Science; 1997.
Google Scholar34. Carmichael, ST, Archibeque, I, Luke, L, Nolan, T, Momiy, J, Li, S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291-311.
Google Scholar | Crossref | Medline35. Carmichael, ST . Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64-75.
Google Scholar | SAGE Journals | ISI36. Carmichael, ST . Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735-742.
Google Scholar | Crossref | Medline | ISI37. Li, S, Carmichael, ST. Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol Dis. 2006;23(2):362-373.
Google Scholar | Crossref | Medline38. Schaden, H, Stuermer, CA, Bahr, M. GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. J Neurobiol. 1994;25(12):1570-1578.
Google Scholar | Crossref | Medline39. Benowitz, LI, Routtenberg, A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84-91.
Google Scholar | Crossref | Medline | ISI40. DiFiglia, M, Roberts, RC, Benowitz, LI. Immunoreactive GAP-43 in the neuropil of adult rat neostriatum: localization in unmyelinated fibers, axon terminals, and dendritic spines. J Comp Neurol. 1990;302(4):992-1001.
Google Scholar | Crossref | Medline41. Sakadzic, S, Lee, J, Boas, DA, Ayata, C. High-resolution in vivo optical imaging of stroke injury and repair. Brain Res. 2015;1623:174-192.
Google Scholar | Crossref | Medline42. Cheng, MY, Aswendt, M, Steinberg, GK. Optogenetic approaches to target specific neural circuits in post-stroke recovery. Neurotherapeutics. 2016;13(2):325-340.
Google Scholar | Crossref | Medline43. Montagni, E, Resta, F, Mascaro, ALA, Pavone, FS. Optogenetics in brain research: from a strategy to investigate physiological function to a therapeutic tool. Photonics. 2019;6(3):92.
Google Scholar | Crossref44. Pendharkar, AV, Levy, SL, Ho, AL, Sussman, ES, Cheng, MY, Steinberg, GK. Optogenetic modulation in stroke recovery. Neurosurg Focus. 2016;40(5):E6.
Google Scholar | Crossref | Medline45. Bauer, AQ, Kraft, AW, Wright, PW, Snyder, AZ, Lee, JM, Culver, JP. Optical imaging of disrupted functional connectivity following ischemic stroke in mice. Neuroimage. 2014;99:388-401.
Google Scholar | Crossref | Medline | ISI46. Song, M, Yu, SP, Mohamad, O, et al. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol Dis. 2017;98:9-24.
Google Scholar | Crossref | Medline47. Butefisch, CM . Neurobiological bases of rehabilitation. Neurol Sci. 2006;27(Suppl 1):S18-S23.
Google Scholar | Crossref | Medline48. Jinno, S, Kosaka, T. Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. J Comp Neurol. 2004;477(2):188-201.
Google Scholar | Crossref | Medline49. Lee, AT, Vogt, D, Rubenstein, JL, Sohal, VS. A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci. 2014;34(35):11519-11525.
Google Scholar | Crossref | Medline50. Rock, C, Zurita, H, Lebby, S, Wilson, CJ, Apicella, AJ. Cortical circuits of callosal GABAergic Neurons. Cereb Cortex. 2018;28(4):1154-1

留言 (0)

沒有登入
gif