Development of Surgical and Visualization Procedures to Analyze Vasculatures by Mouse Tail Edema Model

1.

Kumar DL, DeFalco T. A perivascular niche for multipotent progenitors in the fetal testis. Nat Commun. 2018;9(1):4519.

PubMed  PubMed Central  Google Scholar 

2.

Neufeld S, Planas-Paz L, Lammert E. Blood and lymphatic vascular tube formation in mouse. Semin Cell Dev Biol. 2014;31:115–23.

PubMed  Google Scholar 

3.

Azimi MS, Motherwell JM, Hodges NA, Rittenhouse GR, Majbour D, Porvasnik SL, et al. Lymphatic-to-blood vessel transition in adult microvascular networks: a discovery made possible by a top-down approach to biomimetic model development. Microcirculation. 2020;27(2):e12595.

PubMed  Google Scholar 

4.

Cormier JN, Askew RL, Mungovan KS, Xing Y, Ross MI, Armer JM. Lymphedema beyond breast cancer: a systematic review and meta-analysis of cancer-related secondary lymphedema. Cancer. 2010;116(22):5138–49.

PubMed  Google Scholar 

5.

Warren AG, Brorson H, Borud LJ, Slavin SA. Lymphedema: a comprehensive review. Ann Plast Surg. 2007;59(4):464–72.

CAS  PubMed  Google Scholar 

6.

Petrek JA, Pressman PI, Smith RA. Lymphedema: current issues in research and management. CA Cancer J Clin. 2000;50(5):292–307 quiz 308-211.

CAS  PubMed  Google Scholar 

7.

Hong YK, Shin JW, Detmar M. Development of the lymphatic vascular system: a mystery unravels. Dev Dyn. 2004;231(3):462–73.

CAS  PubMed  Google Scholar 

8.

Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4(1):35–45.

CAS  PubMed  Google Scholar 

9.

Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med. 2002;196(11):1497–506.

CAS  PubMed  PubMed Central  Google Scholar 

10.

Li H, Meng QH, Noh H, Batth IS, Somaiah N, Torres KE, et al. Detection of circulating tumor cells from cryopreserved human sarcoma peripheral blood mononuclear cells. Cancer Lett. 2017;403:216–23.

CAS  PubMed  PubMed Central  Google Scholar 

11.

Brix B, Sery O, Onorato A, Ure C, Roessler A, Goswami N. Biology of lymphedema. Biology (Basel). 2021;10(4).

12.

Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14(3):159–72.

CAS  PubMed  Google Scholar 

13.

Mishima T, Ito Y, Nishizawa N, Amano H, Tsujikawa K, Miyaji K, et al. RAMP1 signaling improves lymphedema and promotes lymphangiogenesis in mice. J Surg Res. 2017;219:50–60.

CAS  PubMed  Google Scholar 

14.

Sitzia J. Volume measurement in lymphoedema treatment: examination of formulae. Eur J Cancer Care (Engl). 1995;4(1):11–6.

CAS  Google Scholar 

15.

Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ. CD4(+) cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS One. 2012;7(11):e49940.

CAS  PubMed  PubMed Central  Google Scholar 

16.

Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA, Chaudhry A, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295(5):H2113–27.

CAS  PubMed  Google Scholar 

17.

Kung TA, Champaneria MC, Maki JH, Neligan PC. Current concepts in the surgical management of lymphedema. Plast Reconstr Surg. 2017;139(4):1003e–13e.

CAS  PubMed  Google Scholar 

18.

Kaplan-Marans E, Fulla J, Tomer N, Bilal K, Palese M. Indocyanine green (ICG) in urologic surgery. Urology. 2019;132:10–7.

PubMed  Google Scholar 

19.

Wada T, Kawada K, Takahashi R, Yoshitomi M, Hida K, Hasegawa S, et al. ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc. 2017;31(10):4184–93.

PubMed  Google Scholar 

20.

Kim JH, Byeon HK, Kim DH, Kim SH, Choi EC, Koh YW. ICG-guided sentinel lymph node sampling during robotic Retroauricular neck dissection in cN0 Oral Cancer. Otolaryngol Head Neck Surg. 2020;162(3):410–3.

PubMed  Google Scholar 

21.

Li Z, Yao S, Xu J. Indocyanine-green-assisted near-infrared dental imaging - the feasibility of in vivo imaging and the optimization of imaging conditions. Sci Rep. 2019;9(1):8238.

PubMed  PubMed Central  Google Scholar 

22.

Mihara M, Hara H, Araki J, Kikuchi K, Narushima M, Yamamoto T, et al. Indocyanine green (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PLoS One. 2012;7(6):e38182.

CAS  PubMed  PubMed Central  Google Scholar 

23.

Ayestaray B, Bekara F, Andreoletti JB. Patent blue-enhanced lymphaticovenular anastomosis. J Plast Reconstr Aesthet Surg. 2013;66(3):382–9.

PubMed  Google Scholar 

24.

Li Z, Hartzler T, Ramos A, Osborn ML, Li Y, Yao S, et al. Optimal imaging windows of indocyanine green-assisted near-infrared dental imaging with rat model and its comparison to X-ray imaging. J Biophotonics. 2020;13(6):e201960232.

PubMed  Google Scholar 

25.

Inyushin M, Meshalkina D, Zueva L, Zayas-Santiago A. Tissue transparency in vivo. Molecules. 2019;24(13).

26.

Jing D, Yi Y, Luo W, Zhang S, Yuan Q, Wang J, et al. Tissue clearing and its application to bone and dental tissues. J Dent Res. 2019;98(6):621–31.

CAS  PubMed  PubMed Central  Google Scholar 

27.

Hirashima T, Adachi T. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development. PLoS One. 2015;10(8):e0135343.

PubMed  PubMed Central  Google Scholar 

28.

Kolesová H, Čapek M, Radochová B, Janáček J, Sedmera D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem Cell Biol. 2016;146(2):141–52.

PubMed  Google Scholar 

29.

Peeters G, Debbaut C, Laleman W, Monbaliu D, Vander Elst I, Detrez JR, et al. A multilevel framework to reconstruct anatomical 3D models of the hepatic vasculature in rat livers. J Anat. 2017;230(3):471–83.

CAS  PubMed  Google Scholar 

30.

Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, et al. Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia. 2016;30(5):1103–15.

CAS  PubMed  Google Scholar 

31.

Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. 2014;157(3):726–39.

CAS  PubMed  Google Scholar 

32.

Tainaka K, Kubota SI, Suyama TQ, Susaki EA, Perrin D, Ukai-Tadenuma M, et al. Whole-body imaging with single-cell resolution by tissue decolorization. Cell. 2014;159(4):911–24.

CAS  PubMed  Google Scholar 

33.

Santi PA. Light sheet fluorescence microscopy: a review. J Histochem Cytochem. 2011;59(2):129–38.

CAS  PubMed  PubMed Central  Google Scholar 

34.

Uzarski J, Drelles MB, Gibbs SE, Ongstad EL, Goral JC, McKeown KK, et al. The resolution of lymphedema by interstitial flow in the mouse tail skin. Am J Physiol Heart Circ Physiol. 2008;294(3):H1326–34.

CAS  PubMed  Google Scholar 

35.

Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Rep. 2016;15(9):1930–44.

CAS  PubMed  PubMed Central  Google Scholar 

36.

Susaki EA, Ueda HR. Whole-body and whole-organ clearing and imaging techniques with single-cell resolution: toward organism-level systems biology in mammals. Cell Chem Biol. 2016;23(1):137–57.

CAS  PubMed  Google Scholar 

37.

Kubota SI, Takahashi K, Nishida J, Morishita Y, Ehata S, Tainaka K, et al. Whole-body profiling of Cancer metastasis with single-cell resolution. Cell Rep. 2017;20(1):236–50.

CAS  PubMed  Google Scholar 

38.

Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020;21(2):61–79.

CAS  PubMed  PubMed Central  Google Scholar 

39.

Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A, Tomer R, et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat Neurosci. 2017;20(2):176–88.

CAS  PubMed  Google Scholar 

40.

Maruoka H, Nakagawa N, Tsuruno S, Sakai S, Yoneda T, Hosoya T. Lattice system of functionally distinct cell types in the neocortex. Science. 2017;358(6363):610–5.

CAS  PubMed  Google Scholar 

41.

Dupraz S, Hilton BJ, Husch A, Santos TE, Coles CH, Stern S, et al. RhoA controls axon extension independent of specification in the developing brain. Curr Biol. 2019;29(22):3874–3886.e3879.

CAS  PubMed  Google Scholar 

42.

Arganda-Carreras I, Fernández-González R, Muñoz-Barrutia A, Ortiz-De-Solorzano C. 3D reconstruction of histological sections: application to mammary gland tissue. Microsc Res Tech. 2010;73(11):1019–29.

PubMed  Google Scholar 

43.

Matsumaru D, Murashima A, Fukushima J, Senda S, Matsushita S, Nakagata N, et al. Systematic stereoscopic analyses for cloacal development: the origin of anorectal malformations. Sci Rep. 2015;5:13943.

PubMed  PubMed Central  Google Scholar 

44.

Hashimoto D, Kajimoto M, Ueda Y, Hyuga T, Fujimoto K, Inoue S, et al. 3D reconstruction and histopathological analyses on murine corporal body. Reprod Med Biol. 2021;20(2):199–207.

PubMed  PubMed Central  Google Scholar 

45.

Mori Y, Umeda M, Fukunaga M, Ogasawara K, Yoshioka Y. MR contrast in mouse lymph nodes with subcutaneous administrati

留言 (0)

沒有登入
gif