Current Perspectives on the Immunosuppressive Niche and Role of Fibrosis in Hepatocellular Carcinoma and the Development of Antitumor Immunity

1. Nivolumab (Opdivo): US Food & Drug Administration . 2014 [cited 2019 May 2]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=125554
Google Scholar2. Pembrolizumab (Keytruda): 2014 . 2014 [cited 2019 April 19]. Available from: http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=125514
Google Scholar3. Atezolizumab (Tecentriq): US Food & Drug Administration . 2016 [cited 2019 May 6]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761034
Google Scholar4. Ipilimumab (Yervoy): US Food & Drug Administration . 2011 [cited 2019 May 8]. Available from: https://clinicaltrials.gov/ct2/show/NCT03695952?term=pembrolizumab&cond=Hepatobiliary+Cancer&rank=1
Google Scholar5. Nishida, N, Kudo, M. Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol Res. 2018;48(8):622–34. doi:10.1111/hepr.13191.29734514.
Google Scholar | Crossref6. Sharma, P, Allison, JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. doi:10.1016/j.cell.2015.03.030.
Google Scholar | Crossref7. Llovet, JM, Ricci, S, Mazzaferro, V, Hilgard, P, Gane, E, Blanc, JF, de Oliveira, AC, Santoro, A, Raoul, JL, Forner, A, Schwartz, M, Porta, C, Zeuzem, S, Bolondi, L, Greten, TF, Galle, PR, Seitz, JF, Borbath, I, Haussinger, D, Giannaris, T, Shan, M, Moscovici, M, Voliotis, D, Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90. doi:10.1056/NEJMoa0708857.
Google Scholar | Crossref8. Cheng, AL, Kang, YK, Chen, Z, Tsao, CJ, Qin, S, Kim, JS, Luo, R, Feng, J, Ye, S, Yang, TS, Xu, J, Sun, Y, Liang, H, Liu, J, Wang, J, Tak, WY, Pan, H, Burock, K, Zou, J, Voliotis, D, Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. doi:10.1016/s1470-2045(08)70285-7.
Google Scholar | Crossref | Medline9. Kudo, M, Finn, RS, Qin, S, Han, KH, Ikeda, K, Piscaglia, F, Baron, A, Park, JW, Han, G, Jassem, J, Blanc, JF, Vogel, A, Komov, D, Evans, TRJ, Lopez, C, Dutcus, C, Guo, M, Saito, K, Kraljevic, S, Tamai, T, Ren, M, Cheng, AL. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–73. doi:10.1016/S0140-6736(18)30207-1.
Google Scholar | Crossref10. Finn, RS, Qin, S, Ikeda, M, Galle, PR, Ducreux, M, Kim, TY, Kudo, M, Breder, V, Merle, P, Kaseb, AO, Li, D, Verret, W, Xu, DZ, Hernandez, S, Liu, J, Huang, C, Mulla, S, Wang, Y, Lim, HY, Zhu, AX, Cheng, AL, Investigators, IM. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382(20):1894–905. doi:10.1056/NEJMoa1915745.
Google Scholar | Crossref11. Finn, RS, Ryoo, BY, Merle, P, Kudo, M, Bouattour, M, Lim, HY, Breder, V, Edeline, J, Chao, Y, Ogasawara, S, Yau, T, Garrido, M, Chan, SL, Knox, J, Daniele, B, Ebbinghaus, SW, Chen, E, Siegel, AB, Zhu, AX, Cheng, AL, investigators K- . Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38(3):193–202. doi:10.1200/JCO.19.01307.
Google Scholar | Crossref12. El-Khoueiry, AB, Sangro, B, Yau, T, Crocenzi, TS, Kudo, M, Hsu, C, Kim, TY, Choo, SP, Trojan, J, Welling, THR, Meyer, T, Kang, YK, Yeo, W, Chopra, A, Anderson, J, Dela Cruz, C, Lang, L, Neely, J, Tang, H, Dastani, HB, Melero, I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–502. doi:10.1016/s0140-6736(17)31046-2.
Google Scholar | Crossref13. Yau, T, Park, JW, Finn, RS, Cheng, AL, Mathurin, P, Edeline, J, Kudo, M, Sangro, B, Han, KH, Harding, JJ, Merle, P, Rosmorduc, O, Wyrwicz, L, Schott, E, Choo, SP, Kelley, RK, Begic, D, Chen, G, Neely, J, Anderson, J. CheckMate 459: a randomized, multi-center phase 3 study of nivolumab vs sorafenib as first-line treatment in patients with advanced hepatocellular carcinoma. Ann Oncol. 2019;30(suppl_5):v874–5.
Google Scholar | Crossref14. Teng, MW, Ngiow, SF, Ribas, A, Smyth, MJ. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015;75(11):2139–45. doi:10.1158/0008-5472.CAN-15-0255.
Google Scholar | Crossref15. Harding, JJ, Nandakumar, S, Armenia, J, Khalil, DN, Albano, M, Ly, M, Shia, J, Hechtman, JF, Kundra, R, El Dika, I, Do, RK, Sun, Y, Kingham, TP, D’Angelica, MI, Berger, MF, Hyman, DM, Jarnagin, W, Klimstra, DS, Janjigian, YY, Solit, DB, Schultz, N, Abou-Alfa, GK. Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 2019;25(7):2116–26. doi:10.1158/1078-0432.CCR-18-2293.
Google Scholar | Crossref16. Kim, CG, Kim, C, Yoon, SE, Kim, KH, Choi, SJ, Kang, B, Kim, HR, Park, SH, Shin, EC, Kim, YY, Kim, DJ, Chung, HC, Chon, HJ, Choi, HJ, Lim, HY. Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma. J Hepatol. 2021;74(2):350–9. doi:10.1016/j.jhep.2020.08.010.
Google Scholar | Crossref17. Nishida, N . Role of oncogenic pathways on the cancer immunosuppressive microenvironment and its clinical implications in hepatocellular carcinoma. Cancers. 2021;13(15):3666. doi:10.3390/cancers13153666.
Google Scholar | Crossref18. Fujita, M, Yamaguchi, R, Hasegawa, T, Shimada, S, Arihiro, K, Hayashi, S, Maejima, K, Nakano, K, Fujimoto, A, Ono, A, Aikata, H, Ueno, M, Hayami, S, Tanaka, H, Miyano, S, Yamaue, H, Chayama, K, Kakimi, K, Tanaka, S, Imoto, S, Nakagawa, H. Classification of primary liver cancer with immunosuppression mechanisms and correlation with genomic alterations. EBioMedicine. 2020;53:102659. doi:10.1016/j.ebiom.2020.102659.
Google Scholar | Crossref19. Zajac, AJ, Blattman, JN, Murali-Krishna, K, Sourdive, DJ, Suresh, M, Altman, JD, Ahmed, R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–13. doi:10.1084/jem.188.12.2205.
Google Scholar | Crossref20. Gallimore, A, Glithero, A, Godkin, A, Tissot, AC, Pluckthun, A, Elliott, T, Hengartner, H, Zinkernagel, R. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med. 1998;187(9):1383–93. doi:10.1084/jem.187.9.1383.
Google Scholar | Crossref21. Barber, DL, Wherry, EJ, Masopust, D, Zhu, B, Allison, JP, Sharpe, AH, Freeman, GJ, Ahmed, R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7. doi:10.1038/nature04444.
Google Scholar | Crossref22. Lebosse, F, Gudd, C, Tunc, E, Singanayagam, A, Nathwani, R, Triantafyllou, E, Pop, O, Kumar, N, Mukherjee, S, Hou, TZ, Quaglia, A, Zoulim, F, Wendon, J, Dhar, A, Thursz, M, Antoniades, CG, Khamri, W. CD8(+)T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine. 2019;49:258–68. doi:10.1016/j.ebiom.2019.10.011.
Google Scholar | Crossref23. Chang, CH, Curtis, JD, Maggi, LB, Faubert, B, Villarino, AV, O’Sullivan, D, Huang, SC, van der Windt, GJ, Blagih, J, Qiu, J, Weber, JD, Pearce, EJ, Jones, RG, Pearce, EL. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013;153(6):1239–51. doi:10.1016/j.cell.2013.05.016.
Google Scholar | Crossref24. Fattovich, G, Stroffolini, T, Zagni, I, Donato, F. Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology. 2004;127(5 Suppl 1):S35–50. doi:10.1053/j.gastro.2004.09.014.
Google Scholar | Crossref25. El-Serag, HB . Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. doi:10.1056/NEJMra1001683.
Google Scholar | Crossref26. Chen, DS, Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.012.
Google Scholar | Crossref | Medline27. Motz, GT, Coukos, G. Deciphering and reversing tumor immune suppression. Immunity. 2013;39(1):61–73. doi:10.1016/j.immuni.2013.07.005.
Google Scholar | Crossref28. Llovet, JM, Villanueva, A, Lachenmayer, A, Finn, RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12(7):408–24. doi:10.1038/nrclinonc.2015.103.
Google Scholar | Crossref29. Ahn, SM, Jang, SJ, Shim, JH, Kim, D, Hong, SM, Sung, CO, Baek, D, Haq, F, Ansari, AA, Lee, SY, Chun, SM, Choi, S, Choi, HJ, Kim, J, Kim, S, Hwang, S, Lee, YJ, Lee, JE, Jung, WR, Jang, HY, Yang, E, Sung, WK, Lee, NP, Mao, M, Lee, C, Zucman-Rossi, J, Yu, E, Lee, HC, Kong, G. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014;60(6):1972–82. doi:10.1002/hep.27198.
Google Scholar | Crossref30. Fujimoto, A, Totoki, Y, Abe, T, Boroevich, KA, Hosoda, F, Nguyen, HH, Aoki, M, Hosono, N, Kubo, M, Miya, F, Arai, Y, Takahashi, H, Shirakihara, T, Nagasaki, M, Shibuya, T, Nakano, K, Watanabe-Makino, K, Tanaka, H, Nakamura, H, Kusuda, J, Ojima, H, Shimada, K, Okusaka, T, Ueno, M, Shigekawa, Y, Kawakami, Y, Arihiro, K, Ohdan, H, Gotoh, K, Ishikawa, O, Ariizumi, S, Yamamoto, M, Yamada, T, Chayama, K, Kosuge, T, Yamaue, H, Kamatani, N, Miyano, S, Nakagama, H, Nakamura, Y, Tsunoda, T, Shibata, T, Nakagawa, H. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4. doi:10.1038/ng.2291.
Google Scholar | Crossref31. Nault, JC, Calderaro, J, Di Tommaso, L, Balabaud, C, Zafrani, ES, Bioulac-Sage, P, Roncalli, M, Zucman-Rossi, J. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92. doi:10.1002/hep.27372.
Google Scholar | Crossref32. Nault, JC, Mallet, M, Pilati, C, Calderaro, J, Bioulac-Sage, P, Laurent, C, Laurent, A, Cherqui, D, Balabaud, C, Zucman-Rossi, J. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218. doi:10.1038/ncomms3218.
Google Scholar | Crossref | Medline33. Nault, JC, Ningarhari, M, Rebouissou, S, Zucman-Rossi, J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019;16(9):544–58. doi:10.1038/s41575-019-0165-3.
Google Scholar | Crossref34. Rebouissou, S, Franconi, A, Calderaro, J, Letouze, E, Imbeaud, S, Pilati, C, Nault, JC, Couchy, G, Laurent, A, Balabaud, C, Bioulac-Sage, P, Zucman-Rossi, J. Genotype-phenotype correlation of CTNNB1 mutations reveals different ss-catenin activity associated with liver tumor progression. Hepatology. 2016;64(6):2047–61. doi:10.1002/hep.28638.
Google Scholar | Crossref35. Desert, R, Rohart, F, Canal, F, Sicard, M, Desille, M, Renaud, S, Turlin, B, Bellaud, P, Perret, C, Clement, B, Le Cao, KA, Musso, O. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology. 2017;66(5):1502–18. doi:10.1002/hep.29254.
Google Scholar | Crossref36. Sakamoto, M, Effendi, K, Masugi, Y. Molecular diagnosis of multistage hepatocarcinogenesis. JPN J Clin Oncol. 2010;40(9):891–6. doi:10.1093/jjco/hyq099.
Google Scholar | Crossref37. Tsujikawa, H, Masugi, Y, Yamazaki, K, Itano, O, Kitagawa, Y, Sakamoto, M. Immunohistochemical molecular analysis indicates hepatocellular carcinoma subgroups that reflect tumor aggressiveness. Hum Pathol. 2016;50:24–33. doi:10.1016/j.humpath.2015.10.014.
Google Scholar | Crossref | Medline38. Sumimoto, H, Takano, A, Teramoto, K, Daigo, Y. RAS-mitogen-activated protein kinase signal is required for enhanced PD-L1 expression in human lung cancers. PLoS ONE. 2016;11(11):e0166626. doi:10.1371/journal.pone.0166626.
Google Scholar | Crossref39. Reck, M, Rodriguez-Abreu, D, Robinson, AG, Hui, R, Csoszi, T, Fulop, A, Gottfried, M, Peled, N, Tafreshi, A, Cuffe, S, O’Brien, M, Rao, S, Hotta, K, Leiby, MA, Lubiniecki, GM, Shentu, Y, Rangwala, R, Brahmer, JR Investigators K- . Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. doi:10.1056/NEJMoa1606774.
Google Scholar | Crossref40. Xie, QK, Zhao, YJ, Pan, T, Lyu, N, Mu, LW, Li, SL, Shi, MD, Zhang, ZF, Zhou, PH, Zhao, M. Programmed death ligand 1 as an indicator of pre-existing adaptive immune responses in human hepatocellular carcinoma. Oncoimmunology. 2016;5(7):e1181252. doi:10.1080/2162402x.2016.1181252.
Google Scholar | Crossref41. Nishida, N, Sakai, K, Morita, M, Aoki, T, Takita, M, Hagiwara, S, Komeda, Y, Takenaka, M, Minami, Y, Ida, H, Ueshima, K, Nishio, K, Kudo, M. Association between genetic and immunological background of hepatocellular carcinoma and expression of programmed cell death-1. Liver Cancer. 2020;9(4):426–39. doi:10.1159/000506352.
Google Scholar | Crossref42. Taube, JM, Anders, RA, Young, GD, Xu, H, Sharma, R, McMiller, TL, Chen, S, Klein, AP, Pardoll, DM, Topalian, SL, Chen, L. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. doi:10.1126/scitranslmed.3003689.
Google Scholar | Crossref43. Shah, MA, Kojima, T, Hochhauser, D, Enzinger, P, Raimbourg, J, Hollebecque, A, Lordick, F, Kim, SB, Tajika, M, Kim, HT, Lockhart, AC, Arkenau, HT, El-Hajbi, F, Gupta, M, Pfeiffer, P, Liu, Q, Lunceford, J, Kang, SP, Bhagia, P, Kato, K. Efficacy and safety of pembrolizumab for heavily pretreated patients with advanced, metastatic adenocarcinoma or squamous cell carcinoma of the esophagus: the phase 2 KEYNOTE-180 study. JAMA Oncol. 2019;5(4):546–50. doi:10.1001/jamaoncol.2018.5441.
Google Scholar | Crossref44. Kato, K, Cho, BC, Takahashi, M, Okada, M, Lin, CY, Chin, K, Kadowaki, S, Ahn, MJ, Hamamoto, Y, Doki, Y, Yen, CC, Kubota, Y, Kim, SB, Hsu, CH, Holtved, E, Xynos, I, Kodani, M, Kitagawa, Y. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(11):1506–17. doi:10.1016/S1470-2045(19)30626-6.

留言 (0)

沒有登入
gif