An ancient retroviral RNA element hidden in mammalian genomes and its involvement in co-opted retroviral gene regulation

1.

Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos Trans R Soc B Biol Sci. 2013;368:1626.

Article  CAS  Google Scholar 

2.

Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18(2):71–86.

CAS  PubMed  Article  PubMed Central  Google Scholar 

3.

Foroushani AK, Chim B, Wong M, Rastegar A, Smith PT, Wang S, et al. Posttranscriptional regulation of human endogenous retroviruses by RNA-binding motif protein 4, RBM4. Proc Natl Acad Sci USA. 2020;117(42):26520–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

4.

Daly TJ, Cook KS, Gray GS, Maione TE, Rusche JR. Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature. 1989;342(6251):816–9.

CAS  PubMed  Article  PubMed Central  Google Scholar 

5.

Zapp ML, Green MR. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature. 1989;342(6250):714–6.

CAS  PubMed  Article  PubMed Central  Google Scholar 

6.

Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–60.

CAS  PubMed  Article  PubMed Central  Google Scholar 

7.

Arrigo SJ, Chen ISY. Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev. 1991;5(5):808–19.

CAS  PubMed  Article  PubMed Central  Google Scholar 

8.

Hanly SM, Rimsky LT, Malim MH, Kim JH, Hauber J, Duc Dodon M, et al. Comparative analysis of the HTLV-I Rex and HIV-1 Rev trans-regulatory proteins and their RNA response elements. Genes Dev. 1989;3(10):1534–44.

CAS  PubMed  Article  PubMed Central  Google Scholar 

9.

Indik S, Günzburg WH, Salmons B, Rouault F. A novel, mouse mammary tumor virus encoded protein with Rev-like properties. Virology. 2005;337(1):1–6.

CAS  PubMed  Article  PubMed Central  Google Scholar 

10.

Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, et al. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci USA. 1994;91(4):1256–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

11.

Grüter P, Tabernero C, Von Kobbe C, Schmitt C, Saavedra C, Bachi A, et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell. 1998;1(5):649–59.

PubMed  Article  PubMed Central  Google Scholar 

12.

Jin L, Guzik BW, Bor YC, Rekosh D, Hammarskjöld ML. Tap and NXT promote translation of unspliced mRNA. Genes Dev. 2003;17(24):3075–86.

CAS  PubMed  PubMed Central  Article  Google Scholar 

13.

Sakuma T, Davila JI, Malcolm JA, Kocher J-PA, Tonne JM, Ikeda Y. Murine leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. J Virol. 2014;88(8):4069–82.

PubMed  PubMed Central  Article  CAS  Google Scholar 

14.

Takata M, Soll SJ, Emery A, Blanco-Melo D, Swanstrom R, Bieniasz PD. Global synonymous mutagenesis identifies cis-acting RNA elements that regulate HIV-1 splicing and replication. PLoS Pathog. 2018;14(1):1–26.

Article  CAS  Google Scholar 

15.

Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology. 2004;1:1–13.

Article  CAS  Google Scholar 

16.

Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. Proc Natl Acad Sci USA. 2016;113(16):E2326–34.

CAS  PubMed  PubMed Central  Article  Google Scholar 

17.

Magin C, Löwer R, Löwer J. cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J Virol. 1999;73(11):9496–507.

CAS  PubMed  PubMed Central  Article  Google Scholar 

18.

Yang J, Bogerd HP, Peng S, Wiegand H, Truant R, Cullen BR. An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA. 1999;96(23):13404–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

19.

Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000 Feb;403(6771):785–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

20.

Blond J-L, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 2000;74(7):3321–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

21.

Kitao K, Tanikaga T, Miyazawa T. Identification of a post-transcriptional regulatory element in the human endogenous retroviral syncytin-1. J Gen Virol. 2019;100(4):662–8.

CAS  PubMed  Article  PubMed Central  Google Scholar 

22.

Blaise S, de Parseval N, Benit L, Heidmann T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA. 2003;100(22):13013–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

23.

Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 2021;12(1):1–14.

Article  CAS  Google Scholar 

24.

Wheeler TJ, Eddy SR. nhmmer: DNA homology search with profile HMMs. Bioinformatics. 2013;29(19):2487–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

25.

Laufer G, Mayer J, Mueller BF, Mueller-Lantzsch N, Ruprecht K. Analysis of transcribed human endogenous retrovirus W env loci clarifies the origin of multiple sclerosis-associated retrovirus env sequences. Retrovirology. 2009;6:1–17.

Article  CAS  Google Scholar 

26.

Kryukov K, Imanishi T. Human contamination in public genome assemblies. PLoS ONE. 2016;11(9):1–11.

Article  CAS  Google Scholar 

27.

Cantrell MA, Ederer MM, Erickson IK, Swier VJ, Baker RJ, Wichman HA. MysTR: an endogenous retrovirus family in mammals that is undergoing recent amplifications to unprecedented copy numbers. J Virol. 2005;79(23):14698–707.

CAS  PubMed  PubMed Central  Article  Google Scholar 

28.

Grandi N, Cadeddu M, Blomberg J, Tramontano E. Contribution of type W human endogenous retroviruses to the human genome: characterization of HERV-W proviral insertions and processed pseudogenes. Retrovirology. 2016;13(1):67.

PubMed  PubMed Central  Article  CAS  Google Scholar 

29.

Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, et al. Classification and characterization of human endogenous retroviruses mosaic forms are common. Retrovirology. 2016;13(1):1–29.

Article  CAS  Google Scholar 

30.

Grandi N, Cadeddu M, Blomberg J, Mayer J, Tramontano E. HERV-W group evolutionary history in non-human primates: characterization of ERV-W orthologs in Catarrhini and related ERV groups in Platyrrhini. BMC Evol Biol. 2018;18(1):1–14.

Article  CAS  Google Scholar 

31.

Grandi N, Pisano MP, Demurtas M, Blomberg J, Magiorkinis G, Mayer J, et al. Identification and characterization of ERV-W-like sequences in Platyrrhini species provides new insights into the evolutionary history of ERV-W in primates. Mob DNA. 2020;11(1):1–16.

Article  Google Scholar 

32.

Imakawa K, Nakagawa S. The phylogeny of placental evolution through dynamic integrations of retrotransposons. Prog Mol Biol Transl Sci. 2017;145:89–109.

CAS  PubMed  Article  PubMed Central  Google Scholar 

33.

Imakawa K, Nakagawa S, Miyazawa T. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells. 2015;20:771–88.

CAS  PubMed  Article  Google Scholar 

34.

Esnault C, Cornelis G, Heidmann O, Heidmann T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genet. 2013;9(3):1–12.

Article  CAS  Google Scholar 

35.

Dupressoir A, Marceau G, Vernochet C, Benit L, Kanellopoulos C, Sapin V, et al. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA. 2005;102(3):725–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

36.

Redelsperger F, Cornelis G, Vernochet C, Tennant BC, Catzeflis F, Mulot B, et al. Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the rodentia squirrel-related clade. J Virol. 2014;88(14):7915–28.

PubMed  PubMed Central  Article  CAS  Google Scholar 

37.

Heidmann O, Vernochet C, Dupressoir A, Heidmann T. Identification of an endogenous retroviral envelo

留言 (0)

沒有登入
gif