Enhanced recognition of emotional images is not affected by post-exposure exercise-induced arousal

American College of Sports Medicine . (2013). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
Google Scholar Anderson, A. K., Wais, P. E., Gabrieli, J. D. (2006). Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1599–1604. https://doi.org/10.1073/pnas.0506308103
Google Scholar Barsegyan, A., Mackenzie, S. M., Kurose, B. D., McGaugh, J. L., Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16655–16660. https://doi.org/10.1073/pnas.1011975107
Google Scholar Baym, C. L., Khan, N. A., Pence, A., Raine, L. B., Hillman, C. H., Cohen, N. J. (2014). Aerobic fitness predicts relational memory but not item memory performance in healthy young adults. Journal of Cognitive Neuroscience, 26(11), 2645–2652. https://doi.org/10.1162/jocn_a_00667
Google Scholar Bennett, H., Parfitt, G., Davison, K., Eston, R. (2016). Validity of submaximal step tests to estimate maximal oxygen uptake in healthy adults. Sports Medicine, 46(5), 737–750. https://doi.org/10.1007/s40279-015-0445-1
Google Scholar Blough, J., Loprinzi, P. D. (2019). Experimental manipulation of psychological control scenarios: Implications for exercise and memory research. Psych, 1(1), 279–289. https://doi.org/10.3390/psych1010019
Google Scholar Borg, E., Kaijser, L. (2006). A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports, 16(1), 57–69. Chicago https://doi.org/10.1111/j.1600-0838.2005.00448.x
Google Scholar Brown, R., Kulik, J. (1977). Flashbulb memories. Cognition, 5(1), 73–99. https://doi.org/10.1016/0010-0277(77)90018-X
Google Scholar Buckley, J., Sim, J., Eston, R., Hession, R., Fox, R. (2004). Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. British Journal of Sports Medicine, 38(2), 197–205. https://doi.org/10.1136/bjsm.2003.005389
Google Scholar Cahill, L., Alkire, M. T. (2003). Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiology of Learning and Memory, 79(2), 194–198. https://doi.org/10.1016/S1074-7427(02)00036-9
Google Scholar Chandler, M. C., McGowan, A. L., Burles, F., Mathewson, K. E., Scavuzzo, C. J., Pontifex, M. B. (2020). Aerobic fitness unrelated to acquisition of spatial relational memory in college-aged adults. Journal of Sport and Exercise Psychology, 42(6), 472–479. https://doi.org/10.1123/jsep.2020-0004
Google Scholar Chang, Y.-K., Labban, J., Gapin, J., Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. https://doi.org/10.1016/j.brainres.2012.02.068
Google Scholar Coles, K., Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333–344. https://doi.org/10.1080/02640410701591417
Google Scholar Craig, M., Dewar, M., Harris, M. A., Della Sala, S., Wolbers, T. (2016). Wakeful rest promotes the integration of spatial memories into accurate cognitive maps. Hippocampus, 26(2), 185–193. https://doi.org/10.1002/hipo.22502
Google Scholar Cryer, P. E. (1980). Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. New England Journal of Medicine, 303(8), 436–444. https://doi.org/10.1056/NEJM198008213030806
Google Scholar Davies, C. (1968). Limitations to the prediction of maximum oxygen intake from cardiac frequency measurements. Journal of Applied Physiology, 24(5), 700–706. https://doi.org/10.1152/jappl.1968.24.5.700
Google Scholar Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M., Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport and Exercise Psychology, 19(3), 249–277. https://doi.org/10.1123/jsep.19.3.249
Google Scholar Greenhouse, S. W., Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95–112. https://doi.org/10.1007/BF02289823
Google Scholar Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M., Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934–941. https://doi.org/10.1016/j.physbeh.2011.06.005
Google Scholar Hötting, K., Schickert, N., Kaiser, J., Röder, B., Schmidt-Kassow, M. (2016). The effects of acute physical exercise on memory, peripheral BDNF, and cortisol in young adults. Neural Plasticity, 2016, Article 6860573. https://doi.org/10.1155/2016/6860573
Google Scholar Hwang, J., Brothers, R. M., Castelli, D. M., Glowacki, E. M., Chen, Y. T., Salinas, M. M., . . . Calvert, H. G. (2016). Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neuroscience Letters, 630, 247–253. https://doi.org/10.1016/j.neulet.2016.07.033
Google Scholar Jaffery, A., Edwards, M. K., Loprinzi, P. D. (2018). The effects of acute exercise on cognitive function: Solomon experimental design. The Journal of Primary Prevention, 39(1), 37–46. https://doi.org/10.1007/s10935-017-0498-z
Google Scholar JASP Team . (2018). JASP (Version 0.8.5). https://jaspstats.org/
Google Scholar Keyan, D., Bryant, R. A. (2017). Brief exercise enhances intrusive memories of traumatic stimuli. Neurobiology of Learning and Memory, 141, 9–13. https://doi.org/10.1016/j.nlm.2017.03.012
Google Scholar LaBar, K. S., Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews: Neuroscience, 7(1), 54–64. https://doi.org/10.1038/nrn1825
Google Scholar Lambourne, K., Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24. https://doi.org/10.1016/j.brainres.2010.03.091
Google Scholar Lang, P. J., Bradley, M. M., Cuthbert, B. N. (1997). International affective picture system (IAPS): Technical manual and affective ratings. NIMH Center for the Study of Emotion and Attention. https://www2.unifesp.br/dpsicobio/adap/instructions.pdf
Google Scholar Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis. Brain Sciences, 9(4), Article 87. https://doi.org/10.3390/brainsci9040087
Google Scholar Loprinzi, P. D., Frith, E., Edwards, M. K. (2019). Exercise and emotional memory: A systematic review. Journal of Cognitive Enhancement, 3, 94–103. https://doi.org/10.1007/s41465-018-0086-z
Google Scholar Loprinzi, P. D., Lovorn, A., Gilmore, J. (2021). Effects of exercise on explicit memory function: Incidental and intentional encoding may depend on exercise timing. Perceptual and Motor Skills, 128(2), 865–884. https://doi.org/10.1177/0031512520979671
Google Scholar Macmillan, N. A., Creelman, C. D. (2005). Detection theory: A user’s guide (2nd ed.). Lawrence Erlbaum.
Google Scholar McGaugh, J. L. (1989). Involvement of hormonal and neuromodulatory systems in the regulation of memory storage. Annual Review of Neuroscience, 12(1), 255–287. https://doi.org/10.1146/annurev.ne.12.030189.001351
Google Scholar McGaugh, J. L. (2013). Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl. 2), 10402–10407. https://doi.org/10.1073/pnas.1301209110
Google Scholar McGaugh, J. L., Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12(2), 205–210. https://doi.org/10.1016/S0959-4388(02)00306-9
Google Scholar McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 291–299. https://doi.org/10.1016/j.physbeh.2016.08.011
Google Scholar McMorris, T., Collard, K., Corbett, J., Dicks, M., Swain, J. (2008). A test of the catecholamines hypothesis for an acute exercise–cognition interaction. Pharmacology Biochemistry and Behavior, 89(1), 106–115. https://doi.org/10.1016/j.pbb.2007.11.007
Google Scholar McMorris, T., Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338–351. https://doi.org/10.1016/j.bandc.2012.09.001
Google Scholar Most, S. B., Kennedy, B. L., Petras, E. A. (2017). Evidence for improved memory from 5 minutes of immediate, post-encoding exercise among women. Cognitive Research: Principles and Implications, 2(1), 33. https://doi.org/10.1186/s41235-017-0068-1
Google Scholar Nielson, K. A., Radtke, R. C., Jensen, R. A. (1996). Arousal-induced modulation of memory storage processes in humans. Neurobiology of Learning and Memory, 66(2), 133–142. https://doi.org/10.1006/nlme.1996.0054
Google Scholar Okuda, S., Roozendaal, B., McGaugh, J. L. (2004). Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 853–858. https://doi.org/10.1073/pnas.0307803100
Google Scholar Osgood, C. E. (1948). An investigation into the causes of retroactive interference. Journal of Experimental Psychology, 38(2), 132–154. https://doi.org/10.1037/h0055753
Google Scholar Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
Google Scholar Prakash, R. S., Voss, M. W., Erickson, K. I., Kramer, A. F. (2015). Physical activity and cognitive vitality. Annual Review of Psychology, 66, 769–797. https://doi.org/10.1146/annurev-psych-010814-015249
Google Scholar Quirarte, G. L., Roozendaal, B., McGaugh, J. L. (1997). Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14048–14053. https://doi.org/10.1073/pnas.94.25.14048
Google Scholar Robergs, R. A., Landwehr, R. (2002). The surprising history of the” HRmax= 220-age” equation. Journal of Exercise Physiology Online, 5(2), 1–10. https://eprints.qut.edu.au/96880/1/96880.pdf
Google Scholar Roig, M., Thomas, R., Mang, C. S., Snow, N. J., Ostadan, F., Boyd, L. A., Lundbye-Jensen, J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 81–88. https://doi.org/10.1249/JES.0000000000000078
Google Scholar Roozendaal, B. (2000). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3), 213–238. https://doi.org/10.1016/S0306-4530(99)00058-X
Google Scholar Roozendaal, B., Okuda, S., Van der Zee, E. A., McGaugh, J. L. (2006). Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6741–6746. https://doi.org/10.1073/pnas.0601874103
Google Scholar Sandi, C., Loscertales, M., Guaza, C. (1997). Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. European Journal of Neuroscience, 9(4), 637–642. https://doi.org/10.1111/j.1460-9568.1997.tb01412.x
Google Scholar Segal, S. K., Cotman, C. W., Cahill, L. F. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 32(4), 1011–1018. https://doi.org/10.3233/JAD-2012-121078
Google Scholar Soetens, E., Hueting, J., Casaer, S., D’Hooge, R. (1995). Effect of amphetamine on long-term retention of verbal material. Psychopharmacology, 119(2), 155–162. https://doi.org/10.1007/BF02246156
Google Scholar Stanislaw, H., Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149. https://doi.org/10.3758/BF03207704
Google Scholar Sykes, K., Roberts, A. (2004). The Chester step test—A simple yet effective tool for the prediction of aerobic capacity. Physiotherapy, 90(4), 183–188. https://doi.org/10.1016/j.physio.2004.03.008
Google Scholar Wade, B., Loprinzi, P. D. (2018). The experimental effects of acute exercise on long-term emotional memory. Journal of Clinical Medicine, 7(12), 486. https://doi.org/10.3390/jcm7120486
Google Scholar Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., . . . Floel, A. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597–609. https://doi.org/10.1016/j.nlm.2006.11.003
Google Scholar Yonelinas, A. P., Otten, L. J., Shaw, K. N., Rugg, M. D. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience, 25(11), 3002–3008. https://doi.org/10.1523/JNEUROSCI.5295-04.2005
Google Scholar

留言 (0)

沒有登入
gif