Sulforaphane suppresses autophagy during the malignant progression of gastric carcinoma via activating miR-4521/PIK3R3 pathway

1. Păun, I, Costin, AI, Constantin, VD, et al. Gastric cancer - histopathological correlations between tumor and non-tumor gastric mucosa changes. Rom J Morphol Embryol 2020; 61(4): 1129–1141.
Google Scholar | Crossref | Medline2. Higashi, T, Ozawa, K, Takei, S, et al. Primary peritoneal carcinoma with long term survival - a case report. Gan To Kagaku Ryoho 2021; 48(6): 829–832.
Google Scholar | Medline3. Ye, ZS, Zheng, M, Liu, QY, et al. Survival-associated alternative splicing events interact with the immune microenvironment in stomach adenocarcinoma. World J Gastroenterol 2021; 27(21): 2871–2894.
Google Scholar | Crossref | Medline4. Laradayi, K, Bostanci, ME, Mollaoglu, MC, et al. Cytoreductive surgery and perioperative intraperitoneal chemotherapy experience in peritoneal carcinomatosis: single-center analysis of 180 cases. Int J Surg Oncol 2021; 2021: 8851751.
Google Scholar | Medline5. Xie, H, Chun, FK, Rutz, J, et al. Sulforaphane impact on reactive oxygen species (ROS) in bladder carcinoma. Int J Mol Sci 2021; 22(11): 5938.
Google Scholar | Crossref | Medline6. Lu, Z, Ren, Y, Yang, L, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11(5): 1246–1260.
Google Scholar | Crossref | Medline7. Huang, B, Lei, S, Wang, D, et al. Sulforaphane exerts anticancer effects on human liver cancer cells via induction of apoptosis and inhibition of migration and invasion by targeting MAPK7 signalling pathway. J BUON 2021; 26(2): 642.
Google Scholar | Medline8. Kiani, S, Akhavan-Niaki, H, Fattahi, S, et al. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. Gene 2018; 678: 115–123.
Google Scholar | Crossref | Medline9. Chen, CM, Chu, TH, Chou, CC, et al. Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis. Oral Oncol 2021; 120: 105402.
Google Scholar | Crossref | Medline10. Saliminejad, K, Khorram Khorshid, HR, Soleymani Fard, S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234(5): 5451–5465.
Google Scholar | Crossref | Medline11. Dykxhoorn, DM . MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 2010; 70: 6401–6406.
Google Scholar | Crossref | Medline12. Wu, WK, Lee, CW, Cho, CH, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 2010; 29: 5761–5771.
Google Scholar | Crossref | Medline | ISI13. Hosseinahli, N, Aghapour, M, Duijf, PHG, et al. Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 2018; 233: 5574–5588.
Google Scholar | Crossref | Medline14. Xing, S, Tian, Z, Zheng, W, et al. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer 2021; 20(1): 9.
Google Scholar | Crossref | Medline15. Zhao, Y, Wang, Z, Zhang, W, et al. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019; 45(6): 844–856.
Google Scholar | Crossref | Medline16. Zheng, K, Ma, J, Wang, Y, et al. Sulforaphane inhibits autophagy and induces exosome-mediated paracrine senescence via regulating mTOR/TFE3. Mol Nutr Food Res 2020; 64(14): e1901231.
Google Scholar | Crossref | Medline17. Dong, QQ, Wang, QT, Wang, L, et al. SMYD3-associated pathway is involved in the anti-tumor effects of sulforaphane on gastric carcinoma cells. Food Sci Biotechnol 2018; 27(4): 1165–1173.
Google Scholar | Crossref | Medline18. Wang, X, Li, Y, Dai, Y, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6: 36796.
Google Scholar | Crossref | Medline19. Cao, Y, Luo, Y, Zou, J, et al. Autophagy and its role in gastric cancer. Clin Chim Acta 2019; 489: 10–20.
Google Scholar | Crossref | Medline20. Chen, S, Wu, J, Jiao, K, et al. MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis 2018; 9(11): 1070.
Google Scholar | Crossref | Medline21. Shen, J, Zhao, DS, Li, MZ. TGF-beta1 promotes human gastric carcinoma SGC7901 cells invasion by inducing autophagy. Eur Rev Med Pharmacol Sci 2017; 21(5): 1013–1019.
Google Scholar | Medline22. Zhang, X, Wang, S, Wang, H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019; 18(1): 20.
Google Scholar | Crossref | Medline23. Hu, Y, Su, Y, Lei, X, et al. LINC00641/miR-582-5p mediate oxaliplatin resistance by activating autophagy in gastric adenocarcinoma. Sci Rep 2020; 10(1): 14981.
Google Scholar | Crossref | Medline24. Yang, C, Pan, Y. Fluorouracil induces autophagy-related gastric carcinoma cell death through Beclin-1 upregulation by miR-30 suppression. Tumour Biol 2015; 25: 623–629.
Google Scholar25. Feng, X, Yan, N, Sun, W, et al. miR-4521-FAM129A axial regulation on ccRCC progression through TIMP-1/MMP2/MMP9 and MDM2/p53/Bcl2/Bax pathways. Cell Death Discov 2019; 5: 89.
Google Scholar | Crossref | Medline26. Cheng, CC, Yang, BL, Chen, WC, et al. STAT3 mediated miR-30a-5p inhibition enhances proliferation and inhibits apoptosis in colorectal cancer cells. Int J Mol Sci 2020; 21(19): 7315.
Google Scholar | Crossref27. Sun, H, Feng, X. MicroRNA-367 directly targets PIK3R3 to inhibit proliferation and invasion of oral carcinoma cells. Biosci Rep 2020; 40: BSR20193867.
Google Scholar | Crossref | Medline28. Sun, Q, Yang, Z, Li, P, et al. A novel miRNA identified in GRSF1 complex drives the metastasis via the PIK3R3/AKT/NF-κB and TIMP3/MMP9 pathways in cervical cancer cells. Cell Death Dis 2019; 10: 636.
Google Scholar | Crossref | Medline29. Zhu, Y, Zhao, H, Rao, M, et al. MicroRNA-365 inhibits proliferation, migration and invasion of glioma by targeting PIK3R3. Oncol Rep 2017; 37: 2185–2192.
Google Scholar | Crossref | Medline30. Song, Y, He, S, Zhuang, J, et al. MicroRNA-601 serves as a potential tumor suppressor in hepatocellular carcinoma by directly targeting PIK3R3. Mol Med Rep 2019; 19: 2431–2439.
Google Scholar | Medline31. Lu, J, Tang, L, Xu, Y, et al. Mir-1287 suppresses the proliferation, invasion, and migration in hepatocellular carcinoma by targeting PIK3R3. J Cell Biochem 2018; 119: 9229–9238.
Google Scholar | Crossref | Medline32. Lewinska, A, Adamczyk-Grochala, J, Deregowska, A, et al. Sulforaphane-induced cell cycle arrest and senescence are accompanied by DNA hypomethylation and changes in microRNA profile in breast cancer cells. Theranostics 2017; 7(14): 3461–3477.
Google Scholar | Crossref | Medline33. Wang, J, Li, J, Cao, N, et al. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. Onco Targets Ther 2018; 11: 7777–7786.
Google Scholar | Crossref | Medline34. Kanematsu, S, Uehara, N, Miki, H, et al. Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res 2010; 30(9): 3381–3390.
Google Scholar | Medline

留言 (0)

沒有登入
gif