Role of Primary Cilia in Bone and Cartilage

Adameyko, I, Fried, K. 2016. The nervous system orchestrates and integrates craniofacial development: a review. Front Physiol. 7:49.
Google Scholar | Crossref | Medline Akkiraju, H, Nohe, A. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 3(4):177–192.
Google Scholar | Crossref | Medline Alharbi, MA, Zhang, C, Lu, C, Milovanova, TN, Yi, L, Ryu, JD, Jiao, H, Dong, G, O’Connor, JP, Graves, DT. 2018. FOXO1 deletion reverses the effect of diabetic-induced impaired fracture healing. Diabetes. 67(12):2682–2694.
Google Scholar | Crossref | Medline Ashe, A, Butterfield, NC, Town, L, Courtney, AD, Cooper, AN, Ferguson, C, Barry, R, Olsson, F, Liem, KF, Parton, RG, et al. 2012. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum Mol Genet. 21(8):1808–1823.
Google Scholar | Crossref | Medline Bragdon, B, Lybrand, K, Gerstenfeld, L. 2015. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. Curr Protoc Mouse Biol. 5(1):21–34.
Google Scholar | Crossref | Medline Chen, JC, Hoey, DA, Chua, M, Bellon, R, Jacobs, CR. 2016. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J. 30(4):1504–1511.
Google Scholar | Crossref | Medline Deren, ME, Yang, X, Guan, Y, Chen, Q. 2016. Biological and chemical removal of primary cilia affects mechanical activation of chondrogenesis markers in chondroprogenitors and hypertrophic chondrocytes. Int J Mol Sci. 17(2):188.
Google Scholar | Crossref | Medline Ding, Z, Qiu, M, Alharbi, MA, Huang, T, Pei, X, Milovanova, TN, Jiao, H, Lu, C, Liu, M, Qin, L, et al. 2021. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone. 148:115905.
Google Scholar | Crossref | Medline Fu, S, Thompson, CL, Ali, A, Wang, W, Chapple, JP, Mitchison, HM, Beales, PL, Wann, AKT, Knight, MM. 2019. Mechanical loading inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation. Osteoarthr Cartil. 27(7):1064–1074.
Google Scholar | Crossref | Medline Gan, H, Xue, W, Gao, Y, Zhu, G, Chan, D, Cheah, KSE, Huang, J. 2019. KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. Cell Biosci. 9:85.
Google Scholar | Crossref | Medline Hampl, M, Cela, P, Szabo-Rogers, HL, Bosakova, MK, Dosedelova, H, Krejci, P, Buchtova, M. 2017. Role of primary cilia in odontogenesis. J Dent Res. 96(9):965–974.
Google Scholar | SAGE Journals | ISI He, Z, Leong, DJ, Zhuo, Z, Majeska, RJ, Cardoso, L, Spray, DC, Goldring, MB, Cobelli, NJ, Sun, HB. 2016. Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes. Osteoarthr Cartil. 24(5):892–901.
Google Scholar | Crossref | Medline Ishikawa, H, Marshall, WF. 2017. Intraflagellar transport and ciliary dynamics. Cold Spring Harb Perspect Biol. 9(3):a021998.
Google Scholar | Crossref | Medline Ishikawa, T, Ueno, H, Omori, T, Kikuchi, K. 2021. Cilia and centrosomes: ultrastructural and mechanical perspectives. Semin Cell Dev Biol. 110:61–69.
Google Scholar | Crossref | Medline Izu, Y, Sun, M, Zwolanek, D, Veit, G, Williams, V, Cha, B, Jepsen, KJ, Koch, M, Birk, DE. 2011. Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol. 193(6):1115–1130.
Google Scholar | Crossref | Medline Kitami, M, Yamaguchi, H, Ebina, M, Kaku, M, Chen, D, Komatsu, Y. 2019. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage. Biochem Biophys Res Commun. 509(1):222–226.
Google Scholar | Crossref | Medline Kitamura, A, Kawasaki, M, Kawasaki, K, Meguro, F, Yamada, A, Nagai, T, Kodama, Y, Trakanant, S, Sharpe, PT, Maeda, T, et al. 2020. Ift88 is involved in mandibular development. J Anat. 236(2):317–324.
Google Scholar | Crossref | Medline Li, G, Liu, M, Zhang, S, Wan, H, Zhang, Q, Yue, R, Yan, X, Wang, X, Wang, Z, Sun, Y. 2018. Essential role of IFT140 in promoting dentinogenesis. J Dent Res. 97(4):423–431.
Google Scholar | SAGE Journals | ISI Li, X, Shuting, Yang, Han, L, Mao, K, Shuying, Yang. 2020. Ciliary IFT80 is essential for intervertebral disc development and maintenance. FASEB J. 34(5):6741–6756.
Google Scholar | Crossref | Medline Lim, J, Li, X, Yuan, X, Yang, S, Han, L, Yang, S. 2020. Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling. Commun Biol. 3(1):45.
Google Scholar | Crossref | Medline Liu, M, Alharbi, M, Graves, D, Yang, S. 2020. IFT80 is required for fracture healing through controlling the regulation of TGF-β signaling in chondrocyte differentiation and function. J Bone Miner Res. 35(3):571–582.
Google Scholar | Crossref | Medline Lu, Y, Alharbi, M, Zhang, C, O’Connor, JP, Graves, DT. 2019. Deletion of FOXO1 in chondrocytes rescues the effect of diabetes on mechanical strength in fracture healing. Bone. 123:159–167.
Google Scholar | Crossref | Medline Mitchison, HM, Valente, EM. 2017. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 241(2):294–309.
Google Scholar | Crossref | Medline | ISI Moore, ER, Chen, JC, Jacobs, CR. 2019. Prx1-expressing progenitor primary cilia mediate bone formation in response to mechanical loading in mice. Stem Cells Int. 2019:3094154.
Google Scholar | Crossref | Medline Moore, ER, Mathews, OA, Yao, Y, Yang, Y. 2021. Prx1-expressing cells contributing to fracture repair require primary cilia for complete healing in mice. Bone. 143:115738.
Google Scholar | Crossref | Medline Moore, ER, Zhu, YX, Ryu, HS, Jacobs, CR. 2018. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Res Ther. 9(1):190.
Google Scholar | Crossref | Medline Nakayama, K, Katoh, Y. 2018. Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors.J Biochem. 163(3):155–164.
Google Scholar | Crossref | Medline Noda, K, Kitami, M, Kitami, K, Kaku, M, Komatsu, Y. 2016. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 113(19):E2589–E2597.
Google Scholar | Crossref Park, I, Lee, HK, Kim, C, Ismail, T, Kim, YK, Park, JW, Kwon, OS, Kang, BS, Lee, DS, Park, TJ, et al. 2016. IFT46 plays crucial roles in craniofacial and cilia development. Biochem Biophys Res Commun. 477(3):419–425.
Google Scholar | Crossref | Medline Schock, EN, Brugmann, SA. 2017. Discovery, diagnosis, and etiology of craniofacial ciliopathies. Cold Spring Harb Perspect Biol. 9(9):a028258.
Google Scholar | Crossref | Medline Siqueira, MF, Flowers, S, Bhattacharya, R, Faibish, D, Behl, Y, Kotton, DN, Gerstenfeld, L, Moran, E, Graves, DT. 2011. FOXO1 modulates osteoblast differentiation. Bone. 48(5):1043–1051.
Google Scholar | Crossref | Medline Spasic, M, Jacobs, CR. 2017. Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol. 71:42–52.
Google Scholar | Crossref | Medline Subramanian, A, Budhiraja, G, Sahu, N. 2017. Chondrocyte primary cilium is mechanosensitive and responds to low-intensity-ultrasound by altering its length and orientation. Int J Biochem Cell Biol. 91(Pt A):60–64.
Google Scholar | Crossref | Medline Tao, D, Xue, H, Zhang, C, Li, G, Sun, Y. 2019. The role of IFT140 in osteogenesis of adult mice long bone. J Histochem Cytochem. 67(8):601–611.
Google Scholar | SAGE Journals Tao, F, Jiang, T, Tao, H, Cao, H, Xiang, W. 2020. Primary cilia: versatile regulator in cartilage development. Cell Prolif. 53(3):e12765.
Google Scholar | Crossref | Medline Thompson, CL, McFie, M, Paul Chapple, J, Beales, P, Knight, MM. 2021. Polycystin-2 is required for chondrocyte mechanotransduction and traffics to the primary cilium in response to mechanical stimulation. Int J Mol Sci. 22(9):4313.
Google Scholar | Crossref | Medline Tian, H, Feng, J, Li, J, Ho, TV, Yuan, Y, Liu, Y, Brindopke, F, Figueiredo, JC, Magee, W, Sanchez-Lara, PA, et al. 2017. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet. 26(5):860–872.
Google Scholar | Medline | ISI Uytingco, CR, Green, WW, Martens, JR. 2019. Olfactory loss and dysfunction in ciliopathies: molecular mechanisms and potential therapies. Curr Med Chem. 26(17):3103–3119.
Google Scholar | Crossref | Medline Wang, Y, Graves, DT. 2020. Keratinocyte function in normal and diabetic wounds and modulation by FOXO1. J Diabetes Res. 2020:3714704.
Google Scholar | Crossref | Medline Watanabe, M, Kawasaki, M, Kawasaki, K, Kitamura, A, Nagai, T, Kodama, Y, Meguro, F, Yamada, A, Sharpe, PT, Maeda, T, et al. 2019. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Arch Oral Biol. 101:43–50.
Google Scholar | Crossref | Medline Wheatley, DN . 2018. The primary cilium—once a “rudimentary” organelle that is now a ubiquitous sensory cellular structure involved in many pathological disorders. J Cell Commun Signal. 12(1):211–216.
Google Scholar | Crossref | Medline Xiao, E, Graves, DT. 2015. Impact of diabetes on the protective role of FOXO1 in wound healing. J Dent Res. 94(8):1025–1026.
Google Scholar | SAGE Journals | ISI Xie, YF, Shi, WG, Zhou, J, Gao, YH, Li, SF, Fang, QQ, Wang, MG, Ma, HP, Wang, JF, Xian, CJ, et al. 2016. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone. 93:22–32.
Google Scholar | Crossref | Medline Yamaguchi, H, Terajima, M, Kitami, M, Wang, J, He, L, Saeki, M, Yamauchi, M, Komatsu, Y. 2020. IFT20 is critical for collagen biosynthesis in craniofacial bone formation. Biochem Biophys Res Commun. 533(4):739–744.
Google Scholar | Crossref | Medline Yuan, X, Cao, J, He, X, Serra, R, Qu, J, Cao, X, Yang, S. 2016. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 7:11024.
Google Scholar | Crossref | Medline | ISI Yuan, X, Cao, X, Yang, S. 2019. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death Dis. 10(2):63.
Google Scholar | Crossref | Medline Yuan, X, Liu, M, Cao, X, Yang, S. 2019. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int J Biol Sci. 15(10):2087–2099.
Google Scholar | Crossref | Medline Yuan, X, Yang, S. 2016. Primary cilia and intraflagellar transport proteins in bone and cartilage. J Dent Res. 95(12):1341–1349.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif