Valproic Acid After Neurosurgery Induces Elevated Risk of Liver Injury: A Prospective Nested Case-Control Study

1. Zhang, H, Shui, J. Clinical analysis of risk factors related to post-traumatic epilepsy. Chin J Clin Neurosurg. 2010;35 877-880.
Google Scholar2. Christensen, J, Pedersen, MG, Pedersen, CB, Sidenius, P, Olsen, J, Vestergaard, M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet. 2009;373:1105-1110. doi:10.1016/S0140-6736(09).
Google Scholar | Crossref | Medline3. Guo, HL, Jing, X, Sun, JY, et al. Valproic acid and the liver injury in patients with epilepsy: an update. Curr Pharm Des. 2019;25:343-351. doi:10.2174/1381612825666190329145428.
Google Scholar | Crossref | Medline4. DeVane, CL. Pharmacokinetics, drug interactions, and tolerability of valproate. Psychopharmacol Bull. 2003;37(suppl 2):25-42.
Google Scholar | Medline5. Chang, TK, Abbott, FS. Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev. 2006;38:627-639. doi:10.1080/03602530600959433.
Google Scholar | Crossref | Medline6. Dreifuss, FE, Langer, DH. Hepatic considerations in the use of antiepileptic drugs. Epilepsia. 1987;28(suppl 2):S23-S29. doi:10.1111/j.1528-1157.1987.tb05768.x.
Google Scholar | Crossref | Medline | ISI7. Neuman, MG, Shear, NH, Jacobson-Brown, PM, et al. CYP2E1-mediated modulation of valproic acid-induced hepatocytotoxicity. Clin Biochem. 2001;34:211-218. doi:10.1016/s0009-9120(01).
Google Scholar | Crossref | Medline | ISI8. van Egmond, H, Degomme, P, de Simpel, H, Dierick, AM, Roels, H. A suspected case of late-onset sodium-valproate-induced hepatic failure. Neuropediatrics. 1987;18:96-98. doi:10.1055/s-2008-1052461.
Google Scholar | Crossref | Medline9. Shouyong, T. Attention should be paid to the prevention and treatment of anti tuberculosis drug-induced liver injury. Chi J Tuberc Respir Dis. 2019;05:326-329.
Google Scholar10. Perucca, E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs. 2002;16:695-714. doi:10.2165/00023210-200216100-00004.
Google Scholar | Crossref | Medline | ISI11. Hung, CC, Ho, JL, Chang, WL, et al. Association of genetic variants in six candidate genes with valproic acid therapy optimization. Pharmacogenomics 2011;12:1107-1117. doi:10.2217/pgs.11.64.
Google Scholar | Crossref | Medline12. Mei, S, Feng, W, Zhu, L, et al. Genetic polymorphisms and valproic acid plasma concentration in children with epilepsy on valproic acid monotherapy. Seizure. 2017;51:22-6. doi:10.1016/j.seizure.2017.07.005.
Google Scholar | Crossref | Medline13. Ogusu, N, Saruwatari, J, Nakashima, H, et al. Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of gamma-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis. PLoS One. 2014;9:e111066. doi:10.1371/journal.pone.0111066.
Google Scholar | Crossref | Medline14. Stewart, JD, Horvath, R, Baruffini, E, et al. Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology. 2010;52:1791-1796. doi:10.1002/hep.23891.
Google Scholar | Crossref | Medline15. Tan, L, Yu, JT, Sun, YP, Ou, JR, Song, JH, Yu, Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurol Neurosurg. 2010;112:320-323. doi:10.1016/j.clineuro.2010.01.002.
Google Scholar | Crossref | Medline16. Voso, MT, Santini, V, Finelli, C, et al. Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res. 2009;15:5002-5007. doi:10.1158/1078-0432.CCR-09-0494.
Google Scholar | Crossref | Medline | ISI17. Wang, P, Lin, XQ, Cai, WK, et al. Effect of UGT2B7 genotypes on plasma concentration of valproic acid: a meta-analysis. Eur J Clin Pharmacol. 2018;74:433-442. doi:10.1007/s00228-017-2395-z.
Google Scholar | Crossref | Medline18. Wen, ZP, Fan, SS, Du, C, et al. Influence of acylpeptide hydrolase polymorphisms on valproic acid level in Chinese epilepsy patients. Pharmacogenomics. 2016;17:1219-1225. doi:10.2217/pgs-2016-0030.
Google Scholar | Crossref | Medline19. Chateauvieux, S, Morceau, F, Dicato, M, Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010. doi:10.1155/2010/479364.
Google Scholar | Crossref | Medline20. Antoniuk, SA, Bruck, I, Honnicke, LR, Martins, LT, Carreiro, JE, Cat, R. [Acute hepatic failure associated with valproic acid in children. Report of 3 cases]. Arq Neuropsiquiatr. 1996;54(4):652-654.
Google Scholar | Crossref | Medline21. Nanau, RM, Neuman, MG. Adverse drug reactions induced by valproic acid. Clin Biochem. 2013;46:1323-38. doi:10.1016/j.clinbiochem.2013.06.012.
Google Scholar | Crossref22. Sun Jijun, WX . Liver injury induced by antiepileptic drugs. Chi J Neurol. 2006;01:66-68.
Google Scholar23. Verrotti, A, Di Marco, G, la Torre, R, Pelliccia, P, Chiarelli, F. Nonalcoholic fatty liver disease during valproate therapy. Eur J Pediatr. 2009;168:1391-1394. doi:10.1007/s00431-009-0927-y.
Google Scholar | Crossref | Medline24. Wh, WB, Xiquan, Z. Liver injury in patients with craniocerebral trauma and its influence on prognosis. Trauma Crit Care Med. 2018;6:298-299.
Google Scholar25. Yonghong, L, Hongen, L, Shixin, L, et al. Meta-analysis on risk factors for antituberculosis drug-induced liver injury (ADILI) in Chinese patients. Chi J Antibiot. 2021;46:628-633.
Google Scholar26. Thanacoody, RH. Extracorporeal elimination in acute valproic acid poisoning. Clin Toxicol (Phila) 2009;47:609-16. doi:10.1080/15563650903167772.
Google Scholar | Crossref | Medline27. Guo, J, Huo, Y, Li, F, et al. Impact of gender, albumin, and CYP2C19 polymorphisms on valproic acid in Chinese patients: a population pharmacokinetic model. J Int Med Res 2020;48:300060520952281. doi:10.1177/0300060520952281.
Google Scholar | SAGE Journals28. Leppik, IE, Birnbaum, AK. Epilepsy in the elderly. Ann N Y Acad Sci. 2010;1184:208-24. doi:10.1111/j.1749-6632.2009.05113.x.
Google Scholar | Crossref | Medline29. Chung, JY, Cho, JY, Yu, KS, et al. Pharmacokinetic and pharmacodynamic interaction of lorazepam and valproic acid in relation to UGT2B7 genetic polymorphism in healthy subjects. Clin Pharmacol Ther. 2008;83:595-600. doi:10.1038/sj.clpt.6100324.
Google Scholar | Crossref | Medline30. Argikar, UA, Remmel, RP. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos. 2009;37:229-36. doi:10.1124/dmd.108.022426.
Google Scholar | Crossref | Medline31. Krishnaswamy, S, Hao, Q, Al-Rohaimi, A, et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. Functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J Pharmacol Exp Ther. 2005;313:1340-6. doi:10.1124/jpet.104.081968.
Google Scholar | Crossref32. Guo, Y, Hu, C, He, X, Qiu, F, Zhao, L. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27:536-542. doi:10.2133/dmpk.dmpk-11-nt-144.
Google Scholar | Crossref | Medline33. Liu, L, Zhao, L, Wang, Q, Qiu, F, Wu, X, Ma, Y. Influence of valproic acid concentration and polymorphism of UGT1A4*3, UGT2B7 -161C > T and UGT2B7*2 on serum concentration of lamotrigine in Chinese epileptic children. Eur J Clin Pharmacol. 2015;71:1341-1347. doi:10.1007/s00228-015-1925-9.
Google Scholar | Crossref | Medline34. Sun, YX, Zhuo, WY, Lin, H, et al. The influence of UGT2B7 genotype on valproic acid pharmacokinetics in Chinese epilepsy patients. Epilepsy Res. 2015;114:78-80. doi:10.1016/j.eplepsyres.2015.04.015.
Google Scholar | Crossref | Medline35. Wang, Q, Zhao, L, Liang, M, et al. Effects of UGT2B7 Genetic polymorphisms on serum concentrations of valproic acid in Chinese children with epilepsy comedicated with lamotrigine. Ther Drug Monit. 2016;38:343-349. doi:10.1097/FTD.0000000000000271.
Google Scholar | Crossref | Medline36. Guo Wenjing, LL, Zhenguo, L. Advances in genetic polymorphism affecting the efficacy of valproic acid. Chi J Clin Neurosci. 2019;27:236-240.
Google Scholar37. Yu, BN, Luo, CH, Wang, D, et al. CYP2C9 allele variants in Chinese hypertension patients and healthy controls. Clin Chim Acta. 2004;348:57-61. doi:10.1016/j.cccn.2004.04.028.
Google Scholar | Crossref | Medline38. Kurose, K, Sugiyama, E, Saito, Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet. 2012;27:9-54. doi:10.2133/dmpk.dmpk-11-rv-111.
Google Scholar | Crossref | Medline | ISI39. Sipeky, C, Lakner, L, Szabo, M, et al. Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis. 2009;43:239-242. doi:10.1016/j.bcmd.2009.05.005.
Google Scholar | Crossref | Medline40. Tseng, YL, Huang, CR, Lin, CH, et al. Risk factors of hyperammonemia in patients with epilepsy under valproic acid therapy. Medicine (Baltimore) 2014;93:e66. doi:10.1097/MD.0000000000000066.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif